Expand Subject Tree

Subjects Biology and Life Sciences Biology Physiology

Browse results: Found 102

Listing 1 - 10 of 102 << page
of 11
>>
The adrenergic system in cardiovascular physiology and pathophysiology

Authors:
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889193981 Year: Pages: 85 DOI: 10.3389/978-2-88919-398-1 Language: English
Publisher: Frontiers Media SA
Subject: Physiology --- Science (General)
Added to DOAB on : 2015-12-10 11:59:06
License:

Loading...
Export citation

Choose an application

Abstract

Cardiovascular diseases pose an enormous clinical challenge, remaining the most common cause of death in the world. ß-adrenoceptors play an important role on cardiac, vascular and/or endothelial function at a cellular level with relevant applications in several cardiovascular diseases, such as heart failure and hypertension. G protein– coupled receptors (GPCRs), including ß-adrenergic receptors, constitute the most ubiquitous superfamily of plasma membrane receptors and represent the single most important type of therapeutic drug target. Sympathetic nervous system hyperactivity, which characterizes several cardiovascular diseases, such as heart failure and hypertension, as well as physiological ageing, has been proved to exert in the long-term detrimental effects in a wide range of cardiovascular diseases. Acutely, sympathetic hyperactivity represents the response to an insult to the myocardium, aiming to compensate for decreased cardiac output. This process involves the activation of beta-adrenergic receptors by catecholamine with consequent heart rate and cardiac contractility increase. However, long-term exposure of the heart to elevated norepinephrine and epinephrine levels, originating from sympathetic nerve endings and chromaffin cells of the adrenal gland, results in further progressive deterioration in cardiac structure and function. At the molecular level, sustained sympathetic nervous system hyperactivity is responsible for several alterations including altered beta-adrenergic receptor signaling and function (down-regulation/ desensitization). Moreover, the detrimental effects of catecholamine affect also the function of different cell types including, but not limited to, endothelial cells, fibroblasts and smooth muscle cells. Thus, the success of beta-blocker therapy is due, at least in part, to the protection of the heart and the vasculature from the noxious effects of augmented catecholamine levels. The research topic aimed to support the progress towards understanding the role of sympathetic nervous system under physiological conditions, and the contribution of its hyperactivity in the pathogenesis and progression of cardiovascular diseases.

The Adrenergic System in Cardiovascular Physiology and Pathophysiology, 2nd Edition

Authors:
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889197316 Year: Pages: 78 DOI: 10.3389/978-2-88919-731-6 Language: English
Publisher: Frontiers Media SA
Subject: Physiology --- Science (General)
Added to DOAB on : 2016-04-07 11:22:02
License:

Loading...
Export citation

Choose an application

Abstract

Cardiovascular diseases pose an enormous clinical challenge, remaining the most common cause of death in the world. ß-adrenoceptors play an important role on cardiac, vascular and/or endothelial function at a cellular level with relevant applications in several cardiovascular diseases, such as heart failure and hypertension. G protein– coupled receptors (GPCRs), including ß-adrenergic receptors, constitute the most ubiquitous superfamily of plasma membrane receptors and represent the single most important type of therapeutic drug target. Sympathetic nervous system hyperactivity, which characterizes several cardiovascular diseases, such as heart failure and hypertension, as well as physiological ageing, has been proved to exert in the long-term detrimental effects in a wide range of cardiovascular diseases. Acutely, sympathetic hyperactivity represents the response to an insult to the myocardium, aiming to compensate for decreased cardiac output. This process involves the activation of beta-adrenergic receptors by catecholamine with consequent heart rate and cardiac contractility increase. However, long-term exposure of the heart to elevated norepinephrine and epinephrine levels, originating from sympathetic nerve endings and chromaffin cells of the adrenal gland, results in further progressive deterioration in cardiac structure and function. At the molecular level, sustained sympathetic nervous system hyperactivity is responsible for several alterations including altered beta-adrenergic receptor signaling and function (down-regulation/ desensitization). Moreover, the detrimental effects of catecholamine affect also the function of different cell types including, but not limited to, endothelial cells, fibroblasts and smooth muscle cells. Thus, the success of beta-blocker therapy is due, at least in part, to the protection of the heart and the vasculature from the noxious effects of augmented catecholamine levels. The research topic aimed to support the progress towards understanding the role of sympathetic nervous system under physiological conditions, and the contribution of its hyperactivity in the pathogenesis and progression of cardiovascular diseases.

Advances in Mechanisms of Renal Fibrosis

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889454990 Year: Pages: 84 DOI: 10.3389/978-2-88945-499-0 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Physiology
Added to DOAB on : 2019-01-23 14:53:42
License:

Loading...
Export citation

Choose an application

Abstract

Scarring of the glomerular and tubulointerstitial compartments is a hallmark of progressive kidney disease. Renal fibrosis involves a complex interplay between kidney cells, leukocytes and fibroblasts in which transforming growth factor-β (TGF-β) plays a key role. This eBook provides a comprehensive update on TGF-β signalling pathways and introduces a range of cellular and molecular mechanisms involved in renal fibrosis both upstream and downstream of TGF-β. The wide variety of potential new targets described herein bodes well for the future development of effective therapies to tackle the major clinical problem of progressive renal fibrosis.

Keywords

BMP7 --- fibroblast --- HDAC --- HIPK2 --- JNK --- miRNA --- non-classical RAS --- Smad --- TGF-beta

Advances in Systems Immunology and Cancer

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889193134 Year: Pages: 108 DOI: 10.3389/978-2-88919-313-4 Language: English
Publisher: Frontiers Media SA
Subject: Genetics --- Biology --- Biotechnology --- General and Civil Engineering --- Psychiatry --- Medicine (General) --- Physiology --- Neurology --- Science (General)
Added to DOAB on : 2016-02-05 17:24:33
License:

Loading...
Export citation

Choose an application

Abstract

Aims and Scope: The Research Topic is designed to feature the latest innovative and leading-edge research, reviews and opinions on the study of complex and dynamic processes related to the mammalian immune system and cancer. All papers were meticulously selected to present our readers the multidisciplinary approach to tackle the existing challenges faced in these important fields. From high throughput experimental methodologies to computational and theoretical approaches, the articles are intended to introduce physicists, chemists, computer scientists, biologists and immunologists the idea of systems biology approach to the understanding of mammalian immune system and cancer processes. Attention was given to works that developed more effective approaches to the treatment of proinflammatory disease and cancer. The strong interdisciplinary focus will discuss biological systems at the level from a few molecules to the entire organism. Specific focus domain includes: Innate and adaptive immunity, cancer and cancer stem cell, genomic, proteomic and metabolic analysis, imaging, biophysics of immune and cancer response, computational modeling, non-linear analysis, statistical analysis, translational and disease models Types of articles: Viewpoint, commentaries, research letters, research articles, review and methodologies

The Amygdala - Where Emotions Shape Perception, Learning and Memories

Authors:
ISBN: 9789535132493 9789535132509 Year: Pages: 336 DOI: 10.5772/63124 Language: English
Publisher: IntechOpen
Subject: Physiology --- Cytology
Added to DOAB on : 2019-10-03 07:51:50

Loading...
Export citation

Choose an application

Abstract

The amygdala is a central component of the limbic system, which is known to play a critical role in emotional processing of learning and memory. Over these last 20 years, major advances in techniques for examining brain activity greatly helped the scientific community to determine the nature of the contribution of the amygdala to these fundamental aspects of cognition. Combined with new conceptual breakthroughs, research data obtained in animals and humans have also provided major insights into our understanding of the processes by which amygdala dysfunction contributes to various brain disorders, such as autism or Alzheimer's disease. Although the primary goal of this book is to inform experts and newcomers of some of the latest data in the field of brain structures involved in the mechanisms underlying emotional learning and memory, we hope it will also help stimulate discussion on the functional role of the amygdala and connected brain structures in these mechanisms.

Amyotrophic Lateral Sclerosis

Authors:
ISBN: 9789533078069 Year: Pages: 740 DOI: 10.5772/1054 Language: English
Publisher: IntechOpen
Subject: Physiology
Added to DOAB on : 2019-10-03 07:51:48

Loading...
Export citation

Choose an application

Abstract

Though considerable amount of research, both pre-clinical and clinical, has been conducted during recent years, Amyotrophic Lateral Sclerosis (ALS) remains one of the mysterious diseases of the 21st century. Great efforts have been made to develop pathophysiological models and to clarify the underlying pathology, and with novel instruments in genetics and transgenic techniques, the aim for finding a durable cure comes into scope. On the other hand, most pharmacological trials failed to show a benefit for ALS patients. In this book, the reader will find a compilation of state-of-the-art reviews about the etiology, epidemiology, and pathophysiology of ALS, the molecular basis of disease progression and clinical manifestations, the genetics familial ALS, as well as novel diagnostic criteria in the field of electrophysiology. An overview over all relevant pharmacological trials in ALS patients is also included, while the book concludes with a discussion on current advances and future trends in ALS research.

Aquaporins: Dynamic Role and Regulation

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889452897 Year: Pages: 183 DOI: 10.3389/978-2-88945-289-7 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Botany --- Physiology
Added to DOAB on : 2018-02-27 16:16:44
License:

Loading...
Export citation

Choose an application

Abstract

Aquaporins (AQPs), a class of integral membrane proteins, form channels facilitating movement of water and many other solutes. In solute transport systems of all living organisms including plants, animals and fungi, AQPs play a vital role. Plants contain a much higher number of AQP genes compared to animals, the likely consequence of genome duplication events and higher ploidy levels. As a result of duplication and subsequent diversification, plant AQPs have evolved several subfamilies with very diverse functions. Plant AQPs are highly selective for specific solutes because of their unique structural features. For instance, ar/R selectivity filters and NPA domains have been found to be key elements in governing solute permeability through the AQP channels. Combination of conserved motifs and specific amino acids influencing pore morphology appears to regulate the permeability of specific solutes such as water, urea, CO2, H2O2, boric acid, silicic acid and many more. The discovery of novel AQPs has been accelerated over the last few years with the increasing availability of genomic and transcriptomic data. The expanding number of well characterised AQPs provides opportunities to understand factors influencing water transport, nutritional uptake, and elemental balance. Homology-based search tools and phylogenetic analyses offer efficient strategies for AQP identification. Subsequent characterization can be based on different approaches involving proteomics, genomics, and transcriptomic tools. The combination of these technological advances make it possible to efficiently study the inter-dependency of AQPs, regulation through phosphorylation and reversible phosphorylation, networking with other transporters, structural features, pH gating systems, trafficking and degradation. Several studies have supported the role of AQPs in differential phenotypic responses to abiotic and biotic stress in plants. Crop improvement programs aiming for the development of cultivars with higher tolerance against stresses like drought, flooding, salinity and many biotic diseases, can explore and exploit the finely tuned AQP-regulated transport system. For instance, a promising approach in crop breeding programs is the utilization of genetic variation in AQPs for the development of stress tolerant cultivars. Similarly, transgenic and mutagenesis approaches provide an opportunity to better understand the AQP transport system with subsequent applications for the development of climate-smart drought-tolerant cultivars. The contributions to this Frontiers in Plant Science Research Topic have highlighted the evolution and phylogenetic distribution of AQPs in several plant species. Numerous aspects of regulation that seek to explain AQP-mediated transport system have been addressed. These contributions will help to improve our understanding of AQPs and their role in important physiological aspects and will bring AQP research closer to practical applications.

Biogenesis of the oxidative phosphorylation machinery in plants. From gene expression to complex assembly

Authors:
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889192786 Year: Pages: 98 DOI: 10.3389/978-2-88919-278-6 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Physiology --- Botany
Added to DOAB on : 2015-12-03 13:02:24
License:

Loading...
Export citation

Choose an application

Abstract

Mitochondrial biogenesis is an extremely complex process. A hint of this complexity is clearly indicated by the many steps and factors required to assemble the respiratory complexes involved in oxidative phosphorylation. These steps include the expression of genes present in both the nucleus and the organelle, intricate post-transcriptional RNA processing events, the coordinated synthesis, transport and assembly of the different subunits, the synthesis and assembly of co-factors and, finally, the formation of supercomplexes or respirasomes. It can be envisaged, and current knowledge supports this view, that plants have evolved specific mechanisms for the biogenesis of respiratory complexes. For example, expression of the mitochondrial genome in plants has special features, not present in other groups of eukaryotes. Moreover, plant mitochondrial biogenesis and function should be considered in the context of the presence of the chloroplast, a second organelle involved in energetic and redox metabolism. It implies the necessity to discriminate between proteins destined for each organelle and requires the establishment of functional interconnections between photosynthesis and respiration. In recent years, our knowledge of the mechanisms involved in these different processes in plants has considerably increased. As a result, the many events and factors necessary for the correct expression of proteins encoded in the mitochondrial genome, the cis acting elements and factors responsible for the expression of nuclear genes encoding respiratory chain components, the signals and mechanisms involved in the import of proteins synthesized in the cytosol and the many factors required for the synthesis and assembly of the different redox co-factors (heme groups, iron-sulfur clusters, copper centers) are beginning to be recognized at the molecular level. However, detailed knowledge of these processes is still not complete and, especially, little is known about how these processes are interconnected. Questions such as how the proteins, once synthesized in the mitochondrial matrix, are inserted into the membrane and assembled with other components, including those imported from the cytosol, how the expression of both genomes is coordinated and responds to changes in mitochondrial function, cellular requirements or environmental cues, or which factors and conditions influence the assembly of complexes and supercomplexes are still open and will receive much attention in the near future. This Research Topic is aimed at establishing a collection of articles that focus on the different processes involved in the biogenesis of respiratory complexes in plants as a means to highlight recent advances. In this way, it intends to help to construct a picture of the whole process and, not less important, to expose the existing gaps that need to be addressed to fully understand how plant cells build and modulate the complex structures involved in respiration.

Biology of Brain Disorders

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889453801 Year: Pages: 586 DOI: 10.3389/978-2-88945-380-1 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Neurology --- Physiology --- Medicine (General)
Added to DOAB on : 2018-11-16 17:17:57
License:

Loading...
Export citation

Choose an application

Abstract

Brain disorders, including neurological and neuropsychiatric conditions, represent a challenge for public health systems and society at large. The limited knowledge of their biology hampers the development of diagnostic tools and effective therapeutics. A clear understanding of the mechanisms that underlie the onset and progression of brain disorders is required in order to identify new avenues for therapeutic intervention.Overlapping genetic risk factors across different brain disorders suggest common linkages and pathophysiological mechanisms that underlie brain disorders. Methodological and technological advances are leading to new insights that go beyond traditional hypotheses. Taking account of underlying molecular, cellular and systems biology underlying brain function will play an important role in the classification of brain disorders in future.In this Research Topic, the latest advances in our understanding of biological mechanisms across different brain disorders are presented. The areas covered include developments in neurogenetics, epigenetics, plasticity, glial cell biology, neuroimmune interactions and new technologies associated with the study of brain function. Examples of how understanding of biological mechanisms are translating into research strategies that aim to advance diagnoses and treatment of brain disorders are discussed.

Biomaterials and Bioactive Molecules to Drive Differentiation in Striated Muscle Tissue Engineering

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889198412 Year: Pages: 90 DOI: 10.3389/978-2-88919-841-2 Language: English
Publisher: Frontiers Media SA
Subject: Physiology --- Science (General)
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

Tissue engineering is an innovative, multidisciplinary approach which combines (bio)materials, cells and growth factors with the aim to obtain neo-organogenesis to repair or replenish damaged tissues and organs. The generation of engineered tissues and organs (e. g. skin and bladder) has entered into the clinical practice in response to the chronic lack of organ donors. In particular, for the skeletal and cardiac muscles the translational potential of tissue engineering approaches has clearly been shown, even though the construction of this tissue lags behind others given the hierarchical, highly organized architecture of striated muscles. Cardiovascular disease is the leading cause of death in the developed world, where the yearly incidence of Acute MI (AMI) is approx 2 million cases in Europe. Recovery from AMI and reperfusion is still less than ideal. Stem cell therapy may represent a valid treatment. However, delivery of stem cells alone to infarcted myocardium provides no structural support while the myocardium heals, and the injected stem cells do not properly integrate into the myocardium because they are not subjected to the mechanical forces that are known to drive myocardial cellular physiology. On the other hand, there are many clinical cases where the loss of skeletal muscle due to a traumatic injury, an aggressive tumour or prolonged denervation may be cured by the regeneration of this tissue. In vivo, stem or progenitor cells are sheltered in a specialized microenvironment (niche), which regulates their survival, proliferation and differentiation. The goal of this research topic is to highlight the available knowledge on biomaterials and bioactive molecules or a combination of them, which can be used successfully to differentiate stem or progenitor cells into beating cardiomyocytes or organized skeletal muscle in vivo. Innovations compared to the on-going trials may be: 1) the successful delivery of stem cells using sutural scaffolds instead of intracoronary or intramuscular injections; 2) protocols to use a limited number of autologous or allogeneic stem cells; 3) methods to drive their differentiation by modifying the chemical-physical properties of scaffolds or biomaterials, incorporating small molecules (i.e. miRNA) or growth factors; 4) methods to tailor the scaffolds to the elastic properties of the muscle; 5) studies which suggest how to realize scaffolds that optimize tissue functional integration, through the combination of the most up-to-date manufacturing technologies and use of bio-polymers with customized degradation properties.

Listing 1 - 10 of 102 << page
of 11
>>