Search results: Found 16

Listing 1 - 10 of 16 << page
of 2
>>
Sort by
 Ocean Remote Sensing with Synthetic Aperture Radar

Authors: --- --- ---
ISBN: 9783038427209 9783038427193 Year: Pages: 360 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Geography
Added to DOAB on : 2018-02-08 13:19:39
License:

Loading...
Export citation

Choose an application

Abstract

The ocean covers approximately 71% of the Earth’s surface, 90% of the biosphere and contains 97% of Earth’s water. The Synthetic Aperture Radar (SAR) can image the ocean surface in all weather conditions and day or night. SAR remote sensing on ocean and coastal monitoring has become a research hotspot in geoscience and remote sensing. This book—Progress in SAR Oceanography—provides an update of the current state of the science on ocean remote sensing with SAR. Overall, the book presents a variety of marine applications, such as, oceanic surface and internal waves, wind, bathymetry, oil spill, coastline and intertidal zone classification, ship and other man-made objects’ detection, as well as remotely sensed data assimilation. The book is aimed at a wide audience, ranging from graduate students, university teachers and working scientists to policy makers and managers. Efforts have been made to highlight general principles as well as the state-of-the-art technologies in the field of SAR Oceanography.

Vorhersagbarkeit konvektiver Niederschläge: Hochauflösende Ensemblesimulationen für Westafrika

Author:
Book Series: Wissenschaftliche Berichte des Instituts für Meteorologie und Klimaforschung des Karlsruher Instituts für Technologie ISSN: 01795619 ISBN: 9783731501893 Year: Volume: 63 Pages: 319 p. DOI: 10.5445/KSP/1000039449 Language: GERMAN
Publisher: KIT Scientific Publishing
Subject: Science (General)
Added to DOAB on : 2019-07-30 20:01:58
License:

Loading...
Export citation

Choose an application

Abstract

During the West African Monsoon, convective systems generate the largest part of annual precipitation. We investigate their predictability by conducting high-resolution ensemble simulations with the COSMO model, focusing on the impact of the land surface. Are land-surface &#8211; atmosphere interactions in West Africa as important for precipitation forecasts as larger-scale conditions? What are the main physical processes?

Efficient Radar Forward Operator for Operational Data Assimilation within the COSMO-model

Author:
Book Series: Wissenschaftliche Berichte des Instituts für Meteorologie und Klimaforschung des Karlsruher Instituts für Technologie ISSN: 01795619 ISBN: 9783731501282 Year: Volume: 60 Pages: XI, 235 p. DOI: 10.5445/KSP/1000036921 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Physics (General)
Added to DOAB on : 2019-07-30 20:02:01
License:

Loading...
Export citation

Choose an application

Abstract

Doppler radars provide unique 3D information about precipitating clouds in high spatial and temporal resolutions. However, the observed quantities (reflectivity, Doppler velocity and polarization properties) are not directly comparable to the variables of numerical prediction models. In order to enable radar data assimilation, a comprehensive modular radar forward operator has been developed.

Separating the Aerosol Effect in Case of a ""Medicane"

Author:
Book Series: Wissenschaftliche Berichte des Instituts für Meteorologie und Klimaforschung des Karlsruher Instituts für Technologie ISSN: 1795619 ISBN: 9783731504054 Year: Volume: 68 Pages: VI, 170 p. DOI: 10.5445/KSP/1000047813 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Physics (General)
Added to DOAB on : 2019-07-30 20:02:01
License:

Loading...
Export citation

Choose an application

Abstract

This work addresses the interactions of aerosols, clouds and dynamics in case of a so-called Medicane. This type of cyclone occurs over the Mediterranean Sea, showing similarities to Hurricanes over the Atlantic and Pacific Ocean. Due to the high wind speed of the Medicane, a large amount of sea salt particles is emitted over the sea. This can influence the development of the Medicane, its associated clouds, and precipitation.

Endlose Kälte

Author:
Book Series: Wirtschafts-, Sozial- und Umweltgeschichte ISBN: 9783796534744 Year: Pages: 523 DOI: 10.24894/978-3-7965-3474-4 Language: German
Publisher: Schwabe Verlag Grant: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Subject: History
Added to DOAB on : 2020-02-10 11:22:23
License:

Loading...
Export citation

Choose an application

Abstract

Human societies are highly affected by climatic and weather conditions. This is especially true for preindustrial times. In the present volume, the author reconstructs the climate in 15th century Burgundian Netherlands.

Circulation Weather types as a tool in atmospheric, climate and environmental research

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889196418 Year: Pages: 151 DOI: 10.3389/978-2-88919-641-8 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Environmental Sciences --- Geography
Added to DOAB on : 2016-08-16 10:34:25
License:

Loading...
Export citation

Choose an application

Abstract

Classifications of circulation weather systems have a long history in meteorology and climatology. Starting with manual classifications over specific regions of the globe, these tools (generally called “catalogs of synoptic types”) were restricted mainly to weather forecasting and historical climate variability studies. In the last decades, the advance of computing resources and the availability of datasets have fostered the development of fast and objective methods that process large amount of data. In recent years numerous methods of circulation type classification have been designed, showing their usefulness on a wide range of applications in scientific domains related to weather, climate, and environment. This Research Topic highlights methodological advances in circulation weather types and also their applications to different research areas. The articles included in this research topic show that circulation weather types can be used not only in Europe, where they have been always more frequent, but also applied to other regions of the world.

Solar Particle Radiation Storms Forecasting and Analysis: The HESPERIA HORIZON 2020 Project and Beyond

Authors: ---
Book Series: Astrophysics and Space Science Library ISSN: 0067-0057 ISBN: 9783319600505 9783319600512 Year: Volume: 444 Pages: 203 DOI: https://doi.org/10.1007/978-3-319-60051-2 Language: English
Publisher: Springer Nature Grant: Horizon 2020 Framework Programme
Subject: Nuclear Physics
Added to DOAB on : 2018-07-18 15:14:22
License:

Loading...
Export citation

Choose an application

Abstract

Solar energetic particles (SEPs) emitted from the Sun are a major space weather hazard motivating the development of predictive capabilities. This book presents the results and findings of the HESPERIA (High Energy Solar Particle Events forecasting and Analysis) project of the EU HORIZON 2020 programme. It discusses the forecasting operational tools developed within the project, and presents progress to SEP research contributed by HESPERIA both from the observational as well as the SEP modelling perspective. Using multi-frequency observational data and simulations HESPERIA investigated the chain of processes from particle acceleration in the corona, particle transport in the magnetically complex corona and interplanetary space, to the detection near 1 AU. The book also elaborates on the unique software that has been constructed for inverting observations of relativistic SEPs to physical parameters that can be compared with space-borne measurements at lower energies. Introductory and pedagogical material included in the book make it accessible to students at graduate level and will be useful as background material for Space Physics and Space Weather courses with emphasis on Solar Energetic Particle Event Forecasting and Analysis.

Assimilation of Remote Sensing Data into Earth System Models

Authors: --- ---
ISBN: 9783039216406 9783039216413 Year: Pages: 236 DOI: 10.3390/books978-3-03921-641-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General)
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

In the Earth sciences, a transition is currently occurring in multiple fields towards an integrated Earth system approach, with applications including numerical weather prediction, hydrological forecasting, climate impact studies, ocean dynamics estimation and monitoring, and carbon cycle monitoring. These approaches rely on coupled modeling techniques using Earth system models that account for an increased level of complexity of the processes and interactions between atmosphere, ocean, sea ice, and terrestrial surfaces. A crucial component of Earth system approaches is the development of coupled data assimilation of satellite observations to ensure consistent initialization at the interface between the different subsystems. Going towards strongly coupled data assimilation involving all Earth system components is a subject of active research. A lot of progress is being made in the ocean–atmosphere domain, but also over land. As atmospheric models now tend to address subkilometric scales, assimilating high spatial resolution satellite data in the land surface models used in atmospheric models is critical. This evolution is also challenging for hydrological modeling. This book gathers papers reporting research on various aspects of coupled data assimilation in Earth system models. It includes contributions presenting recent progress in ocean–atmosphere, land–atmosphere, and soil–vegetation data assimilation.

Ensemble Forecasting Applied to Power Systems

Authors: ---
ISBN: 9783039283125 9783039283132 Year: Pages: 134 DOI: 10.3390/books978-3-03928-313-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

Modern power systems are affected by many sources of uncertainty, driven by the spread of renewable generation, by the development of liberalized energy market systems and by the intrinsic random behavior of the final energy customers. Forecasting is, therefore, a crucial task in planning and managing modern power systems at any level: from transmission to distribution networks, and in also the new context of smart grids. Recent trends suggest the suitability of ensemble approaches in order to increase the versatility and robustness of forecasting systems. Stacking, boosting, and bagging techniques have recently started to attract the interest of power system practitioners. This book addresses the development of new, advanced, ensemble forecasting methods applied to power systems, collecting recent contributions to the development of accurate forecasts of energy-related variables by some of the most qualified experts in energy forecasting. Typical areas of research (renewable energy forecasting, load forecasting, energy price forecasting) are investigated, with relevant applications to the use of forecasts in energy management systems.

Remote Sensing of Precipitation: Volume 1

Author:
ISBN: 9783039212859 9783039212866 Year: Pages: 480 DOI: 10.3390/books978-3-03921-286-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Environmental Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

Precipitation is a well-recognized pillar in global water and energy balances. An accurate and timely understanding of its characteristics at the global, regional, and local scales is indispensable for a clearer understanding of the mechanisms underlying the Earth’s atmosphere–ocean complex system. Precipitation is one of the elements that is documented to be greatly affected by climate change. In its various forms, precipitation comprises a primary source of freshwater, which is vital for the sustainability of almost all human activities. Its socio-economic significance is fundamental in managing this natural resource effectively, in applications ranging from irrigation to industrial and household usage. Remote sensing of precipitation is pursued through a broad spectrum of continuously enriched and upgraded instrumentation, embracing sensors which can be ground-based (e.g., weather radars), satellite-borne (e.g., passive or active space-borne sensors), underwater (e.g., hydrophones), aerial, or ship-borne.

Keywords

GPM --- IMERG --- satellite precipitation adjustment --- numerical weather prediction --- heavy precipitation --- flood-inducing storm --- complex terrain --- precipitation --- geostationary microwave sensors --- polar systems --- synoptic weather types --- drop size distribution (DSD) --- microstructure of rain --- disdrometer --- radar reflectivity–rain rate relationship --- CHIRPS --- CMORPH --- TMPA --- MSWEP --- statistical evaluation --- VIC model --- hydrological simulation --- precipitation --- satellite --- GPM --- TRMM --- CFSR --- PERSIANN --- MSWEP --- streamflow simulation --- lumped models --- Peninsular Spain --- GPM IMERG v5 --- TRMM 3B42 v7 --- precipitation --- evaluation --- Huaihe River basin --- precipitation --- radar --- radiometer --- T-Matrix --- microwave scattering --- quantitative precipitation estimates --- validation --- PERSIANN-CCS --- meteorological radar --- satellite rainfall estimates --- satellite precipitation retrieval --- neural networks --- GPM --- GMI --- remote sensing --- hurricane Harvey --- GPM satellite --- IMERG --- tropical storm rainfall --- gridded radar precipitation --- precipitation --- satellites --- climate models --- regional climate models --- X-band radar --- dual-polarization --- precipitation --- complex terrain --- runoff simulations --- snowfall detection --- snow water path retrieval --- supercooled droplets detection --- GPM Microwave Imager --- Satellite Precipitation Estimates --- GPM --- TRMM --- IMERG --- GSMaP --- TMPA --- CMORPH --- assessment --- Pakistan --- heavy rainfall prediction --- satellite radiance --- data assimilation --- RMAPS --- harmonie model --- radar data assimilation --- pre-processing --- mesoscale precipitation patterns --- GNSS meteorology --- GPS --- Zenith Tropospheric Delay --- precipitable water vapor --- SEID --- single frequency GNSS --- Precise Point Positioning --- low-cost receivers --- goGPS --- GPM --- IMERG --- TRMM --- precipitation --- Cyprus --- satellite precipitation product --- Tianshan Mountains --- GPM --- TRMM --- CMORPH --- heavy precipitation --- rainfall retrieval techniques --- forecast model --- Red–Thai Binh River Basin --- TMPA 3B42V7 --- TMPA 3B42RT --- rainfall --- bias correction --- linear-scaling approach --- climatology --- topography --- precipitation --- remote sensing --- CloudSat --- CMIP --- high latitude --- mineral dust --- wet deposition --- cloud scavenging --- dust washout process --- Saharan dust transportation --- precipitation rate --- precipitating hydrometeor --- hydrometeor classification --- cloud radar --- Ka-band --- thunderstorm --- thundercloud --- vertical air velocity --- terminal velocity --- Milešovka observatory --- rain gauges --- radar --- quality indexes --- satellite rainfall retrievals --- validation --- surface rain intensity --- kriging with external drift --- PEMW --- MSG --- SEVIRI --- downscaling --- tropical cyclone --- rain rate --- precipitation --- remote sensing --- radiometer --- retrieval algorithm --- GPM --- DPR --- validation network --- volume matching --- reflectivity --- rainfall rate --- TRMM-era TMPA --- GPM-era IMERG --- satellite rainfall estimate --- Mainland China --- satellite precipitation --- Global Precipitation Measurement (GPM) --- IMERG --- TRMM-TMPA --- Ensemble Precipitation (EP) algorithm --- topographical and seasonal evaluation --- daily rainfall estimations --- TRMM 3B42 v7 --- rain gauges --- Amazon Basin --- regional rainfall regimes --- regional rainfall sub-regimes --- TRMM 3B42 V7 --- CMORPH_CRT --- PERSIANN_CDR --- GR models --- hydrological simulation --- Red River Basin --- satellite precipitation --- Tibetan Plateau --- GPM --- IMERG --- GSMaP --- precipitation --- weather --- radar --- GPM --- RADOLAN --- QPE --- TRMM --- TMPA --- 3B42 --- validation --- rainfall --- telemetric rain gauge --- Lai Nullah --- Pakistan --- XPOL radar --- GPM/IMERG --- WRF-Hydro --- CHAOS --- hydrometeorology --- flash flood --- Mandra --- typhoon --- IMERG --- GSMaP --- Southern China --- precipitation --- satellite remote sensing --- error analysis --- triple collocation --- precipitation --- TRMM --- GPM --- IMERG --- weather radar --- precipitable water vapor --- precipitation retrieval --- rain rate --- QPE

Listing 1 - 10 of 16 << page
of 2
>>
Sort by