Search results: Found 10

Listing 1 - 10 of 10
Sort by
Hochgenaue radarbasierte Abstandsmessung mit geführter Wellenausbreitung

Author:
Book Series: Karlsruher Forschungsberichte aus dem Institut für Hochfrequenztechnik und Elektronik ISSN: 18684696 ISBN: 9783731504337 Year: Volume: 81 Pages: XVIII, 220 p. DOI: 10.5445/KSP/1000049623 Language: GERMAN
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:01:57
License:

Loading...
Export citation

Choose an application

Abstract

In this work, a new measurement approach for a radar-based high accuracy distance measurement with guided wave propagation is presented. The reached distance accuracy is in the single-digit range. The main influencing factors on the achievable accuracy are characterized with the developed methods and techniques, to allow a systematic design and optimization of the system in advance.

Diffraction and Scattering in Launchers of Quasi-Optical Mode Converters for Gyrotrons

Author:
Book Series: Karlsruher Forschungsberichte aus dem Institut für Hochleistungsimpuls- und Mikrowellentechnik ISSN: 21922764 ISBN: 9783866448223 Year: Volume: 2 Pages: IX, 142 p. DOI: 10.5445/KSP/1000026613 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:01:58
License:

Loading...
Export citation

Choose an application

Abstract

In this work different methods for the calculation of diffraction and scattering in launchers of quasi-optical mode converters for gyrotrons are compared, ranked and extended. The extension gives the opportunity to take a tapered average radius of the waveguide antenna into account. The comparison and the extension of the fast field calculation methods for component synthesis opens the possibility to reduce diffraction and stray radiation of reliable and powerful millimeter wave sources.

Photonic Integration and Photonics-Electronics Convergence on Silicon Platform

Authors: --- --- --- --- et al.
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889196937 Year: Pages: 109 DOI: 10.3389/978-2-88919-693-7 Language: English
Publisher: Frontiers Media SA
Subject: General and Civil Engineering --- Materials --- Science (General) --- Physics (General)
Added to DOAB on : 2016-08-16 10:34:25
License:

Loading...
Export citation

Choose an application

Abstract

Silicon photonics technology, which has the DNA of silicon electronics technology, promises to provide a compact photonic integration platform with high integration density, mass-producibility, and excellent cost performance. This technology has been used to develop and to integrate various photonic functions on silicon substrate. Moreover, photonics-electronics convergence based on silicon substrate is now being pursued. Thanks to these features, silicon photonics will have the potential to be a superior technology used in the construction of energy-efficient cost-effective apparatuses for various applications, such as communications, information processing, and sensing. Considering the material characteristics of silicon and difficulties in microfabrication technology, however, silicon by itself is not necessarily an ideal material. For example, silicon is not suitable for light emitting devices because it is an indirect transition material. The resolution and dynamic range of silicon-based interference devices, such as wavelength filters, are significantly limited by fabrication errors in microfabrication processes. For further performance improvement, therefore, various assisting materials, such as indium-phosphide, silicon-nitride, germanium-tin, are now being imported into silicon photonics by using various heterogeneous integration technologies, such as low-temperature film deposition and wafer/die bonding. These assisting materials and heterogeneous integration technologies would also expand the application field of silicon photonics technology. Fortunately, silicon photonics technology has superior flexibility and robustness for heterogeneous integration. Moreover, along with photonic functions, silicon photonics technology has an ability of integration of electronic functions. In other words, we are on the verge of obtaining an ultimate technology that can integrate all photonic and electronic functions on a single Si chip. This e-Book aims at covering recent developments of the silicon photonic platform and novel functionalities with heterogeneous material integrations on this platform.

Transistor- und Leitungsmodellierung zum Entwurf von monolithisch integrierten Leistungsverstärkern für den hohen Millimeterwellen-Frequenzbereich

Author:
Book Series: Karlsruher Forschungsberichte aus dem Institut für Hochfrequenztechnik und Elektronik ISSN: 18684696 ISBN: 9783731501619 Year: Volume: 73 Pages: XIII, 217 p. DOI: 10.5445/KSP/1000037898 Language: GERMAN
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:01:58
License:

Loading...
Export citation

Choose an application

Abstract

The aim of this work is the design of monolithic integrated power amplifiers for frequencies from 200 to 250 GHz and beyond. For this, reliable and flexible transmission line and transistor models are required. The models are created and their accuracy is verified up to 325 GHz. An innovative coupler concept is developed. It is tailor-made for the applied MMIC-technology and the frequency range. Based on this coupler, a novel amplifier topology has been established and applied.

Higher Symmetries and Its Application in Microwave Technology, Antennas and Metamaterials

Authors: ---
ISBN: 9783039218769 9783039218776 Year: Pages: 98 DOI: 10.3390/books978-3-03921-877-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-01-07 09:08:26
License:

Loading...
Export citation

Choose an application

Abstract

Artificial materials have been widely studied and used in photonics and microwaves in the last few decades. Recent research has proven that the introduction of specific higher symmetries in each cell of a periodic medium is an effective approach to obtain unprecedented exotic behaviors and to overcome the current limitations of these devices. For example, simple symmetries of a purely spatial type (glide or twist transformations) can have a huge impact on the properties of the resulting materials, thus defining wideband behaviors for flat lenses or large stop bands for novel EBG materials. This Special Issue opens with a novel discussion on the effect of time-reversal symmetries in antenna theory and presents new structures exploiting symmetries for antenna and microwave components, such as flat lenses, helix antennas, and gap-waveguides. Finally, new modeling methods are discussed for the study of wave propagation along glide surfaces and twist lines.

Hollow core optical fibers

Author:
ISBN: 9783039210886 9783039210893 Year: Pages: 182 DOI: 10.3390/books978-3-03921-089-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

The possibility of guiding light in air has fascinated optical scientists and engineers since the dawn of optical fiber technology. In the last few years, hollow core optical fibers have been attracting the attention of an expanding worldwide research community, furthering the design, fabrication and device implementation of specialty optical fibers. Hollow core optical fibers are entering almost any specific application field of optics from medicine to security; from telecommunication to industrial processing; from instrumentation to biology. In parallel to the increased number of applications, major advances are still being made on the optimization of hollow core fiber designs and on the study of its underlying guiding properties, as well as in the use of different materials and fabrication techniques, which, in turn, are providing even more ways of exploitation of this technology and new technical challenges. This Special Issue of Fibers rides the wave of this increasing interest in the field of hollow core optical fibers by providing an overview of the recent progress in this field as well as an updated and indicative sample of current research activities worldwide.

MEMS Technology for Biomedical Imaging Applications

Authors: ---
ISBN: 9783039216048 9783039216055 Year: Pages: 218 DOI: 10.3390/books978-3-03921-605-5 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

Biomedical imaging is the key technique and process to create informative images of the human body or other organic structures for clinical purposes or medical science. Micro-electro-mechanical systems (MEMS) technology has demonstrated enormous potential in biomedical imaging applications due to its outstanding advantages of, for instance, miniaturization, high speed, higher resolution, and convenience of batch fabrication. There are many advancements and breakthroughs developing in the academic community, and there are a few challenges raised accordingly upon the designs, structures, fabrication, integration, and applications of MEMS for all kinds of biomedical imaging. This Special Issue aims to collate and showcase research papers, short commutations, perspectives, and insightful review articles from esteemed colleagues that demonstrate: (1) original works on the topic of MEMS components or devices based on various kinds of mechanisms for biomedical imaging; and (2) new developments and potentials of applying MEMS technology of any kind in biomedical imaging. The objective of this special session is to provide insightful information regarding the technological advancements for the researchers in the community.

Keywords

tilted microcoil --- electromagnetically-driven --- surface micromachining --- polyimide capillary --- MEMS --- ego-motion estimation --- indoor navigation --- monocular camera --- scale ambiguity --- wearable sensors --- photoacoustic --- microelectromechanical systems (MEMS) --- miniaturized microscope --- lead-free piezoelectric materials --- high frequency ultrasonic transducer --- needle-type --- high spatial resolution --- ultrahigh frequency ultrasonic transducer --- Si lens --- tight focus --- finite element simulation --- low noise amplifier (LNA) --- noise figure --- smart hydrogels --- bio-sensors --- chemo-sensor --- electrochemical sensors --- transduction techniques --- near-field microwave --- microwave resonator --- microwave remote sensing --- potentiometric sensor --- gold nanoparticles --- metal oxide field-effect transistor --- chemo-FET --- bio-FET --- photoacoustic imaging --- microelectromechanical systems (MEMS) --- MEMS scanning mirror --- micromachined US transducer --- microring resonator --- acoustic delay line --- MEMS mirror --- Lissajous scanning --- pseudo-resonant --- sensing --- imaging --- display --- MEMS actuators --- microendoscopy --- confocal --- two-photon --- wide-filed imaging --- photoacoustic --- fluorescence --- scanner --- capacitive micromachined ultrasonic transducer (CMUT) --- acoustics --- micromachining --- capacitive --- transducer --- modelling --- fabrication --- 3D Printing --- piezoelectric array --- ultrasonic transducer --- ultrasonic imaging --- micro-optics --- bioimaging --- microtechnology --- microelectromechanical systems (MEMS) --- in vitro --- in vivo --- cantilever waveguide --- electrostatic actuator --- non-resonating scanner --- optical scanner --- push-pull actuator --- rib waveguide --- n/a

Millimeter-Wave (mmWave) Communications

Author:
ISBN: 9783039284306 9783039284313 Year: Pages: 188 DOI: 10.3390/books978-3-03928-431-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

The millimeter-wave frequency band (30–300 GHz) is considered a potential candidate to host very high data rate communications. First used for high capacity radio links and then for broadband indoor wireless networks, the interest in this frequency band has increased as it is proposed to accommodate future 5G mobile communication systems. The large bandwidth available will enable a number of new uses for 5G. In addition, due to the large propagation attenuation, this frequency band may provide some additional advantages regarding frequency reuse and communication security. However, a number of issues have to be addressed to make mm-wave communications viable. This book collects a number of contributions that present solutions to these challenges.

Synthesis and Modification of Nanostructured Thin Films

Author:
ISBN: 9783039284542 9783039284559 Year: Pages: 276 DOI: 10.3390/books978-3-03928-455-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

The Special Issue “Synthesis and Modification of Nanostructured Thin Films” highlights the recent progress in thin film synthesis/modification and characterization. New methods are reviewed for the synthesis and/or modification of thin films based on laser, magnetron, chemical, and other techniques. The obtained thin nanostructures are characterized by complex and complementary techniques. We think that most of proposed methods can be directly applied in production, but some others still need further elaboration for long-term prospective applications in lasers, optics, materials, electronics, informatics, telecommunications, biology, medicine, and probably many other domains. The Guest Editor and the MDPI staff are therefore pleased to offer this Special Issue to interested readers, including graduate and PhD students as well as postdoctoral researchers, but also to the entire community interested in the field of nanomaterials. We share the conviction that this can serve as a useful tool for updating the literature, but also to aid in the conception of new production and/or research programs. There is plenty of room for further dedicated R&D advances based on new instruments and materials under development.

Keywords

AlGaN --- nanopatterned sapphire substrate --- hydride vapor phase epitaxy --- stress --- transmission electron microscopy --- copper nanowires --- CuNWs --- degradation --- encapsulation --- PDMS --- PMMA --- solution-based --- transparent electrode --- photonic crystal fiber --- demultiplexer --- dense wavelength division multiplexing --- lithium niobate --- waveguide --- photonic integrated circuit --- propagation loss --- optical lithography --- chemo-mechanical polishing --- gold thin film --- nonlinear absorption --- nonlinear refraction --- transient absorption --- nanoparticles --- high-order harmonics --- electroluminescence --- nanolaminate --- Al2O3 --- Tm2O3 --- atomic layer deposition --- germanium --- DLC --- doped biomaterials --- pulsed laser deposition --- reactive oxygen species --- apoptosis --- cytotoxicity --- titanium film --- interlayer --- cohesion --- residual stress --- nano-indenter --- nanocrystal --- CdTe --- Cu-doped --- ZnTe --- solar cells --- solution processed --- pulsed laser deposition --- chalcogenide thin films --- Raman spectroscopy --- spectroscopic ellipsometry --- noble metal nanoparticles --- pulsed laser ablation --- surface enhanced Raman spectroscopy --- antiepileptic drugs --- Zn2+ substituted Coll-CaPs biomimetic layers --- MAPLE --- spin coating --- dye-sensitized solar cells --- photovoltaic conversion efficiency --- TiO2 thin films --- pulsed laser deposition --- DLC bio-functionality --- silicon doping --- diffusion barrier --- biocompatibility --- proliferation improvement --- endothelial cells --- ZnO nanofilms --- SHG --- Ga doping --- polarization angle --- Cu2MgxZn1?xSnS4 --- thin films --- photoelectric performance --- sol–gel --- sulfuration treatment --- solar cell --- nanomaterial --- zinc oxide --- barium titanate --- composite --- ethylene vinyl acetate --- elastic modulus --- toughness --- flexural rigidity --- radiopacity --- piezoelectricity --- laser surface texturing --- laser-induced periodic surface structures --- LIPSS --- silicon --- PTFE --- friction --- n/a

Optoelectronic Nanodevices

Author:
ISBN: 9783039286966 / 9783039286973 Year: Pages: 338 DOI: 10.3390/books978-3-03928-697-3 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

During the last decade, novel graphene related materials (GRMs), perovskites, as well as metal oxides and other metal nanostructures have received the interest of the scientific community. Due to their extraordinary physical, optical, thermal, and electrical properties, which are correlated with their 2D ultrathin atomic layer structure, large interlayer distance, ease of functionalization, and bandgap tunability, these nanomaterials have been applied in the development or the improvement of innovative optoelectronic applications, as well as the expansion of theoretical studies and simulations in the fast-growing fields of energy (photovoltaics, energy storage, fuel cells, hydrogen storage, catalysis, etc.), electronics, photonics, spintronics, and sensing devices. The continuous nanostructure-based applications development has provided the ability to significantly improve existing products and to explore the design of materials and devices with novel functionalities. This book demonstrates some of the most recent trends and advances in the interdisciplinary field of optoelectronics. Most articles focus on light emitting diodes (LEDs) and solar cells (SCs), including organic, inorganic, and hybrid configurations, whereas the rest address photodetectors, transistors, and other well-known dynamic optoelectronic devices. In this context, this exceptional collection of articles is directed at a broad scientific audience of chemists, materials scientists, physicists, and engineers, with the goals of highlighting the potential of innovative optoelectronic applications incorporating nanostructures and inspiring their realization.

Keywords

localized surface plasmon --- green LED --- cathodoluminescence --- FDTD --- NiCo2S4 nanotubes --- Ti porous film --- quantum dot --- solar cells --- counter electrode --- metasurfaces --- orthogonal polarization --- high-efficiency --- polarization analyzer --- green LEDs --- InGaN/GaN superlattice --- V-pits --- external quantum efficiency --- PeLEDs --- OAB --- perovskite --- quantum confinement effect --- transparent electrode --- Ag film --- nucleation layer --- organic solar cell --- graphene oxide --- oxidation --- photodetector --- light-emitting diodes --- quantum dots --- stability --- color-conversion efficiency --- photoluminescence --- p-type InGaN --- graded indium composition --- hole injection --- quantum efficiency --- green LED --- 2D perovskite --- controllable synthesis --- flexible substrate --- photodetector --- photoelectric performance --- photodetector --- organic --- photomultiplication --- tunneling --- external quantum efficiency --- liquid crystals --- metasurfaces --- plasmonics --- actively tunable nanodevices --- solvent --- compact --- smooth --- perovskite solar cells --- indium nanoparticles (In NPs) --- textured silicon solar cells --- antireflective coating (ARC) --- plasmonic forward scattering --- InN/p-GaN heterojunction --- interface --- photovoltaics --- GaN --- LED --- nano-grating --- metamaterials --- mid infrared --- graphene split-ring --- gold split-ring --- electromagnetically induced transparency effect --- transparent conductive electrode --- Ga2O3 --- AlGaN-based ultraviolet light-emitting diode --- transmittance --- sheet resistance --- electrowetting --- tunable absorbers --- subwavelength metal grating --- plasmon resonance --- field emission --- graphene --- reduced graphene oxide --- polymer composites --- graphene ink --- cold cathode --- Fowler–Nordheim --- CdTe microdots --- Schottky barrier --- photodetector --- piezo-phototronic effect --- UV LEDs --- double-layer ITO --- pinhole pattern --- current spreading --- light output power --- flip-chip mini-LED --- prism-structured sidewall --- waveguide photons --- light extraction --- erbium --- silicon transistor --- photocurrent --- colorimetry --- excitation wavelength --- light-emitting diode --- quantum dots --- ternary organic solar cells --- graphene ink --- functionalization --- air-processed --- cascade effect --- charge transfer --- n/a

Listing 1 - 10 of 10
Sort by
Narrow your search