Search results: Found 2

Listing 1 - 2 of 2
Sort by
Computational Aerodynamic Modeling of Aerospace Vehicles

Authors: ---
ISBN: 9783038976103 Year: Pages: 294 DOI: 10.3390/books978-3-03897-611-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Transportation
Added to DOAB on : 2019-03-08 11:42:05
License:

Loading...
Export citation

Choose an application

Abstract

Currently, the use of computational fluid dynamics (CFD) solutions is considered as the state-of-the-art in the modeling of unsteady nonlinear flow physics and offers an early and improved understanding of air vehicle aerodynamics and stability and control characteristics. This Special Issue covers recent computational efforts on simulation of aerospace vehicles including fighter aircraft, rotorcraft, propeller driven vehicles, unmanned vehicle, projectiles, and air drop configurations. The complex flow physics of these configurations pose significant challenges in CFD modeling. Some of these challenges include prediction of vortical flows and shock waves, rapid maneuvering aircraft with fast moving control surfaces, and interactions between propellers and wing, fluid and structure, boundary layer and shock waves. Additional topic of interest in this Special Issue is the use of CFD tools in aircraft design and flight mechanics. The problem with these applications is the computational cost involved, particularly if this is viewed as a brute-force calculation of vehicle’s aerodynamics through its flight envelope. To make progress in routinely using of CFD in aircraft design, methods based on sampling, model updating and system identification should be considered.

Keywords

wake --- bluff body --- square cylinder --- DDES --- URANS --- turbulence model --- large eddy simulation --- Taylor–Green vortex --- numerical dissipation --- modified equation analysis --- truncation error --- MUSCL --- dynamic Smagorinsky subgrid-scale model --- kinetic energy dissipation --- computational fluid dynamics (CFD) --- microfluidics --- numerical methods --- gasdynamics --- shock-channel --- microelectromechanical systems (MEMS) --- discontinuous Galerkin finite element method (DG–FEM) --- fluid mechanics --- characteristics-based scheme --- multi-directional --- Riemann solver --- Godunov method --- bifurcation --- wind tunnel --- neural networks --- modeling --- unsteady aerodynamic characteristics --- high angles of attack --- hypersonic --- wake --- chemistry --- slender-body --- angle of attack --- detection --- after-body --- S-duct diffuser --- flow distortion --- flow control --- vortex generators --- aeroelasticity --- reduced-order model --- flutter --- wind gust responses --- computational fluid dynamics --- convolution integral --- sharp-edge gust --- reduced order aerodynamic model --- geometry --- meshing --- aerodynamics --- CPACS --- MDO --- VLM --- Euler --- CFD --- variable fidelity --- multi-fidelity --- aerodynamic performance --- formation --- VLM --- RANS --- hybrid reduced-order model --- quasi-analytical --- aeroelasticity --- flexible wings --- subsonic --- wing–propeller aerodynamic interaction --- p-factor --- installed propeller --- overset grid approach

Engineering Fluid Dynamics 2018

Author:
ISBN: 9783039281121 / 9783039281138 Year: Pages: 256 DOI: 10.3390/books978-3-03928-113-8 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering --- Technology (General)
Added to DOAB on : 2020-01-30 16:39:46
License:

Loading...
Export citation

Choose an application

Abstract

“Engineering Fluid Dynamics 2018”. The topic of engineering fluid dynamics includes both experimental as well as computational studies. Of special interest were submissions from the fields of mechanical, chemical, marine, safety, and energy engineering. We welcomed both original research articles as well as review articles. After one year, 28 papers were submitted and 14 were accepted for publication. The average processing time was 37.91 days. The authors had the following geographical distribution: China (9); Korea (3); Spain (1); and India (1). Papers covered a wide range of topics, including analysis of fans, turbines, fires in tunnels, vortex generators, deep sea mining, as well as pumps.

Keywords

axial fan --- rotating stall --- aerodynamic noise --- numerical simulation --- noise spectrum --- centrifugal pump --- radiation noise --- distribution characteristic --- acoustic energy --- experimental research --- thermosyphon --- volume of fluid --- multiphase flow --- evaporation and condensation --- centrifugal pump --- impeller --- blade wrap angle --- blade exit angle --- optimized design --- deep sea mining --- manganese nodules exploitation --- hydraulic collecting --- suction flow field --- dimensional analysis --- circumferential groove casing treatment --- sweep and lean --- CGCT-blade integrated optimization --- computational fluid dynamics (CFD) --- flow around cylinder --- fluid structure interaction (FSI) --- hydrodynamic response --- numerical methods --- simulation and modeling --- vortex induced vibration (VIV) ratio --- gas turbine --- axial gap --- hot streak --- heat transfer --- leading edge --- global optimization --- cavitation inception --- orthogonal test --- CFD simulation --- two-stage axial fan --- numerical simulation --- abnormal blade installation angle --- rotating stall --- Tesla turbine --- fluid dynamics --- disc thickness --- disc spacing distance --- isentropic efficiency --- plug-holing --- tunnel slope --- fire --- natural ventilation --- ventilation performance --- aspect ratio --- evacuation --- fire propagation --- tunnel vehicle fire --- unsteady heat release rate --- flow control --- vortex generators --- source term --- Computational Fluid Dynamics (CFD) --- OpenFOAM --- wind tunnel

Listing 1 - 2 of 2
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (2)


License

CC by-nc-nd (2)


Language

eng (2)


Year
From To Submit

2020 (1)

2019 (1)

-->