Search results: Found 8

Listing 1 - 8 of 8
Sort by
The unfolded protein response in virus infections

Author:
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889193974 Year: Pages: 129 DOI: 10.3389/978-2-88919-397-4 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Microbiology --- Botany
Added to DOAB on : 2015-12-03 13:02:24
License:

Loading...
Export citation

Choose an application

Abstract

Unfolded protein response (UPR) is a cellular adaptive response for restoring endoplasmic reticulum (ER) homeostasis in response to ER stress. Perturbation of the UPR and failure to restore ER homeostasis inevitably leads to diseases. It has now become evident that perturbation of the UPR is the cause of many important human diseases such as neurodegenerative diseases, cystic fibrosis, diabetes and cancer. It has recently emerged that virus infections can trigger the UPR but the relationship between virus infections and host UPR is intriguing. On one hand, UPR is harmful to the virus and virus has developed means to subvert the UPR. On the other hand, virus exploits the host UPR to assist in its own infection, gene expression, establishment of persistence, reactivation from latency and to evade the immune response. When this delicate balance of virus-host UPR interaction is broken down, it may cause diseases. This is particularly challenging for viruses that establish a chronic infection to maintain this balance. Each virus interacts with the host UPR in a different way to suit their life style and how the virus interacts with the host UPR can define the characteristic of a particular virus infection. Understanding how a particular virus interacts with the host UPR may pave the way to the design of a new class of anti-viral that targets this particular pathway to skew the response towards anti-virus. This knowledge can also be translated into the clinics to help re-design oncolytic virotherapy and gene therapy. In this research topic we aimed to compile a collection of focused review articles, original research articles, commentary, opinion, hypothesis and methods to highlight the current advances in this burgeoning area of research, in an attempt to provide an in-depth understanding of how viruses interact with the host UPR, which may be beneficial to the future combat of viral and human diseases.

Perspectives for the Next Generation of Virus Research: Spearheading the Use of Innovative Technologies and Methodologies

Authors: --- --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889452156 Year: Pages: 191 DOI: 10.3389/978-2-88945-215-6 Language: English
Publisher: Frontiers Media SA
Subject: Microbiology --- Science (General)
Added to DOAB on : 2017-10-13 14:57:01
License:

Loading...
Export citation

Choose an application

Abstract

Infectious diseases are associated with approximately 20% of global mortality, with viral diseases causing about one third of these deaths. Besides newly emerging and re-emerging viral infections will continue to pose a threat to human survival globally. In this case scientific advances have greatly been increased to defend against those pathogens. For example, rapid genomic sequencing, proteomics, epigenomics, nanotechnology, and other advanced tools are being applied to detect viruses at the point of care and to track their spread within human populations as well as to understand virus-host interaction and virus induced pathogenesis. From rapid identification of new viruses to prevention with vaccination and treatment with effective therapeutics, biomedical research has continuously provided tools to meet the constant threat of emerging viral pathogens. Despite these advances, each new disease brings unique challenges to scientists every year. So we must stay at the cutting edge of scientific discovery, working energetically to develop new tools to combat the ever-changing threats they pose. Our research topic highlights such advanced and new technology based virus research which definitely bolsters the researcher's ability to tackle emerging, re-emerging and stable viral pathogens. We are credulous that the papers including in the e-books will be beneficial to the experts in the field to understand the molecular, immunological, ecological and clinical aspects of the next generation researches for the prevention and control of infectious diseases caused by viruses.

Marine Viruses 2016

Author:
ISBN: 9783038426202 9783038426219 Year: Pages: 320 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Biology
Added to DOAB on : 2018-01-10 13:29:28
License:

Loading...
Export citation

Choose an application

Abstract

The research effort, publication rate and scientific community within the field of marine viruses have been growing rapidly over the past decade and viruses are now known to play key roles in microbial population dynamics, diversity and evolution as well as biogeochemical cycling.The compilation of papers included in the current Special Issue highlights the exploration of eukaryotic and prokaryotic viruses, from discovery to complex interplays between virus and host and virus–host interactions with ecologically relevant environmental variables. The discovery of novel viruses and new mechanisms underlying virus distribution and diversity exemplify the fascinating world of marine viruses. The oceans greatly shape Earth’s climate, hold 1.37 billion km3 of seawater, produce half of the oxygen in the atmosphere, and are integral to all known life. In a time where life in the oceans is under increasing threat (global warming, pollution, economic use) it is pressing to understand how viruses affect host population dynamics, biodiversity, biogeochemical cycling and ecosystem efficiency.

Modeling the Plankton - Enhancing the Integration of Biological Knowledge and Mechanistic Understanding

Authors: --- --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889453658 Year: Pages: 228 DOI: 10.3389/978-2-88945-365-8 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Oceanography
Added to DOAB on : 2018-02-27 16:16:45
License:

Loading...
Export citation

Choose an application

Abstract

In light of climate change and allied changes to marine ecosystems, mathematical models have become an important tool to examine processes and predict phenomena from local through to global scales. In recent years model studies, laboratory experiments and a better ecological understanding of the pelagic ecosystem have enabled advancements on fundamental challenges in oceanography, including marine production, biodiversity and anticipation of future conditions in the ocean. This research topic presents a number of studies that investigate functionally diverse organism in a dynamic ocean through diverse and novel modeling approaches.

Recent Progress in Bunyavirus Research

Authors: ---
ISBN: 9783038423935 9783038423928 Year: Pages: VIII, 224 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Biology
Added to DOAB on : 2017-06-14 11:52:43
License:

Loading...
Export citation

Choose an application

Abstract

The Bunyaviridae is the largest family of RNA viruses, with over 350 isolates worldwide distributed into five genera (i.e., Hantavirus, Orthobunyavirus, Nairovirus, Tospovirus, and Phlebovirus). Many of these viruses are significant human or agricultural pathogens. The increasing number of reports on new emerging bunyaviruses and infection episodes makes it essential that we obtain a comprehensive understanding of bunyaviruses and their infection mechanisms. Although all bunyaviruses possesses a tripartite, negative-sense (or ambi-sense) RNA genome, they exhibit substantial differences in their structure, genome organization and replication strategies, which make functional interpolation across genus boundaries difficult.Fortunately, the bunyavirus field has witnessed many exciting new findings and breakthroughs in recent years. These discoveries span a wide spectrum of research areas, including structural characterization of viruses and viral proteins, the identification of new viruses, investigations into host switch and vectors of transmission, genome-based analysis of virus evolution and phylogenetic lineages, the development of new research tools, such as replicons and reverse genetics, molecular characterization of the virus life cycle at the cell level (i.e., cell entry, replication, transcription, translation, genome packaging, reassortment, and virus assembly, etc.), studies of virus–host interactions and host antiviral defense, the development of vaccines/drugs and the use of bunyaviruses for novel applications.This book includes both research and review papers that together provide a glimpse into the latest research on bunyaviruses and, at the same time, highlight some of the important research achievements made in recent years. Study topics of both a fundamental and applied nature are collated. An informed perspective for future research directions is provided and can stimulate research in some of the understudied areas.

Influenza Virus and Vaccination

Authors: ---
ISBN: 9783039288175 / 9783039288182 Year: Pages: 130 DOI: 10.3390/books978-3-03928-818-2 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Allergy and Immunology
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

The influenza virus poses a threat to human health and is responsible for global epidemics every year. In addition to seasonal infections, influenza can cause occasional pandemics of great consequence when novel viruses are introduced into humans. Despite the implementation of comprehensive vaccination programs, influenza viruses continue to pose an important and unpredictable global public health threat. They are one of the most significant causes of morbidity and mortality each year and have a significant economic impact. In recent years, research has been conducted to find alternative approaches to influenza vaccine development, including the generation of universal vaccines. Notably, significant progress in the field of influenza infection, transmission, and immunity have contributed to our understanding of influenza biology, and to expanding the technological approaches for the generation of more efficient strategies against influenza infections. Moreover, highly remarkable developments have been made in the implementation of new methodologies to evaluate the efficiency of vaccines and improve them for use on domestic animals such as poultry, horses, dogs or pigs. This enables us to decrease the exposure of humans to potentially pandemic viruses. The articles in this Special Issue will address the importance of influenza to human health and the advances in influenza research that have led to the development of better therapeutics and vaccination strategies.

Virus Bioinformatics

Authors: --- --- ---
ISBN: 9783039218820 9783039218837 Year: Pages: 330 DOI: 10.3390/books978-3-03921-883-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology
Added to DOAB on : 2020-04-07 23:07:08
License:

Loading...
Export citation

Choose an application

Abstract

Virus bioinformatics is evolving and succeeding as an area of research in its own right, representing the interface of virology and computer science. Bioinformatic approaches to investigate viral infections and outbreaks have become central to virology research, and have been successfully used to detect, control, and treat infections of humans and animals. As part of the Third Annual Meeting of the European Virus Bioinformatics Center (EVBC), we have published this Special Issue on Virus Bioinformatics.

Keywords

bioinformatics --- virus --- comparative genomics --- software --- Base-By-Base --- BBB --- poxvirus --- ASFV --- MSA --- foot-and-mouth disease virus (FMDV) --- bovine soft palate --- nasopharynx --- transcriptomics --- proteomics --- bioinformatics --- virus-host interaction --- innate immune system --- interferon-stimulated genes (ISG) --- cellular immunity --- codon frequency distribution --- HPV58 --- minor capsid protein --- TLR agonist --- prophylaxis --- virus --- infection --- fluorescent reporter protein --- image quantification --- Hepatitis C virus --- Yellow Fever Virus --- polyomavirus --- Coxsackievirus B4 --- bivalve --- virome --- RNA-seq --- RNA viruses --- sncRNA --- ADAR --- RNAi --- Marek’s disease virus (MDV) --- RNA-seq --- transcriptome --- splicing --- polycistronic viral transcripts --- primary B cells --- RB1B --- CVI988/Rispens --- ICP0 --- DNA replication --- ori --- mitochondria --- Rickettsia --- gram-positive bacteria --- APMV --- Mimivirus --- giant virus --- eukaryogenesis --- flavivirus --- non-coding RNA --- secondary structure --- endogenous viral elements --- bioinformatics --- horizontal gene transfer --- virus-to-host gene transfer --- HMM --- tobacco mosaic virus --- Drosophila --- capsid protein --- deep sequencing --- virus genomics --- hepatitis C virus --- variant calling --- sequence interpretation --- drug resistance --- bioinformatics --- alignment --- assembly --- taxonomic classification --- time series --- data transformation --- DWT --- DFT --- PAA --- data compression --- compressive genomics --- RNAseq --- honey bees --- deformed wing virus --- quasispecies --- apiary pests --- recombination --- mRNA structure --- structure database --- secondary structure --- viral mRNA --- subVOG --- structurally related --- RNA structure --- structurally homogenous --- structurally related --- mRNA families --- Amebae viruses --- viral evolution --- protein domains --- mimivirus --- dsdna viruses --- translation machinery --- pandoravirus --- NCLDV --- virology --- virus bioinformatics --- software --- systems virology --- metagenomics --- virome --- viral taxonomy --- virus classification --- genome evolution --- bacteriophage --- virosphere --- chemical organization theory --- influenza A --- virus dynamics modeling --- complex networks analysis --- viral metagenome --- groundwater --- aquifer --- AquaDiva --- sequencing library preparation --- virus proteomics --- mass spectrometry --- virus diagnostics --- data analysis --- targeted proteomics --- peptide selection --- parallel reaction monitoring

Hurdles for Phage Therapy (PT) to Become a Reality

Author:
ISBN: 9783039213917 9783039213924 Year: Pages: 484 DOI: 10.3390/books978-3-03921-392-4 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Microbiology
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Alternative treatment modes for antibiotic-resistant bacterial pathogens have become a public health priority. Bacteriophages are bacterial viruses that infect and lyse bacterial cells. Since bacteriophages are frequently bacterial host species-specific and can often also infect antibiotic-resistant bacterial cells, they could represent ideal antimicrobials for fighting the antibiotic resistance crisis. The medical use of bacteriophages has become known as phage therapy. It is widely used in Russia, where phage cocktails are sold in pharmacies as an over-the-counter drug. However, no phage product has been registered for medical purposes outside of the former Soviet Union. The current Special Issue of Viruses contains a collection of papers from opinion leaders in the field who explore hurdles to the introduction of phage therapy in western countries. The articles cover diverse topics ranging from patent to regulatory issues, the targeting of suitable bacterial infections, and the selection and characterization of safe and efficient phage cocktails. Phage resistance is discussed, and gaps in our knowledge of phage–bacterium interactions in the mammalian body are revealed, while other articles explore the use of phages in food production and processing.

Keywords

Staphylococcus aureus --- bacteriophage --- phage therapy --- vB_SauM-fRuSau02 --- Twortlikevirus --- antibiotic --- antimicrobial resistance --- magistral preparation --- compounding pharmacy --- phage therapy --- regulatory framework --- personalized medicine --- bacteriophage --- phage --- horizontal gene transfer --- co-evolution --- phage therapy --- industrial phage application --- antimicrobial resistance (AMR) --- Germany --- pH stability --- phage-host interactions --- genomics --- antibiotic-resistance --- phage preparation --- lysins --- biofilms --- typhoid fever --- Salmonella Typhi --- extended-spectrum beta lactamases (ESBL) --- Democratic Republic of the Congo --- bacteriophages --- MALDI-MS --- Staphylococcus --- bacteriophages --- phage therapy --- Kayvirus --- Viral proteins --- bacteriophage --- therapy --- phage therapy --- bacterial disease --- infection --- target selection --- Bacteriophage --- phage therapy --- resistance --- adaptation --- prophage --- production --- regulation --- phage therapy --- viral genomes --- best practices --- IND --- high-throughput sequencing --- bacteriophages --- phages --- food safety --- foodborne illness --- phage therapy --- history of science --- science communication --- bacteriophage --- phage therapy --- sustainable agriculture --- zoonosis --- antibiotic resistance --- phage therapy --- experimental therapy --- phage cocktails --- anti-phage antibodies --- prophage --- immunomodulation --- phage therapy --- evolution --- bacterial resistance --- virulence --- Listeria ivanovii --- bacteriophages --- alginate --- production --- disinfection --- phagodisinfection --- virus–host interactions --- bacteriophage efficacy --- gastrointestinal tract --- phage therapy --- bacteriophage --- phage therapy --- antimicrobial resistance --- antibiotic --- global health --- developing countries --- infectious disease --- bacteriophage --- phage --- phage therapy --- phage-resistance --- phage therapy --- bacterial infection --- capsule depolymerase --- antibiotic --- animal model --- bacterial resistance --- bacteriophage --- immunology --- innate immunity --- adaptive immunity --- human host --- phage-human host interaction --- bacterial infection --- antibiotic resistance --- bacteriophage --- antibiotic therapy --- phage therapy --- cases report --- abortive infection --- prophage --- adsorption --- Enterococcus --- rhamnopolysaccharide --- bacteriophage --- phage therapy --- Staphylococcus aureus --- biofilm --- antimicrobial --- frequency of resistance --- phage sensitivity --- resistance management --- nontraditional antibacterial --- bacteriophages --- phage therapy --- antibiotic resistance --- Pseudomonas aeruginosa --- Escherichia coli --- Staphylococcus aureus --- Brussels --- Belgium --- phage biocontrol --- patent landscape --- crop production --- bacteriophage --- phage therapy --- multidrug-resistant bacteria --- antimicrobial resistance --- bacteriophage therapy --- compassionate use --- antibiotic resistance --- phage therapy --- PTMP --- ATMP --- regulatory framework --- pharmaceutical paradigm shift --- clinical trial --- magistral formula --- personalized medicine --- phage therapy --- E. faecalis --- OrthoMCL --- antimicrobial resistance --- capsule --- Galleria mellonella --- Klebsiella pneumoniae --- phage therapy --- n/a --- antimicrobial resistance --- bacteriophage --- personalised medicines --- phage therapy --- pharmaceutical legislation --- regulatory framework

Listing 1 - 8 of 8
Sort by
Narrow your search