Search results: Found 15

Listing 1 - 10 of 15 << page
of 2
>>
Sort by
Die zivilrechtliche Haftung für autonome Drohnen unter Einbezug von Zulassungs- und Betriebsvorschriften

Author:
Book Series: sui generis ISBN: 9783941159280 9783941159273 Year: Pages: 304 DOI: 10.24921/2018.94115928 Language: German
Publisher: Carl Grossmann Verlag Grant: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Subject: Agriculture (General) --- Law
Added to DOAB on : 2019-03-08 11:21:05
License:

Loading...
Export citation

Choose an application

Abstract

The characteristics and abilities of autonomous drones pose major chal­lenges for liability law. Nowadays only personal injury and damage to property on the ground are covered by strict liability (Art. 64 para. 1 Swiss Aviation Act). Injured parties are in danger of being left without legal pro­tection in the event of mid-air collisions, as claims for damages cannot be asserted on the basis of erroneous decisions by an algorithm, either through liability for wilful or negligent wrongdoing (Art. 41 para. 1 Swiss Code of Obligations) or product liability. The same applies to purely pecu­niary loss. The question of liability for wilful or negligent wrongdoing arises only if duties of care were violated when using autonomous drones. Such duties of care may ensue from permit and operating regulations. Currently autonomous flights without the possibility of direct control and beyond a pilot’s field of vision are allowed only with special permits. As international efforts show, such barriers will come down in future. Appropriate licensing and operating regulations as described in this dissertation will therefore be required. At the same time it will be necessary to extend strict liability under aviation law for unmanned aircraft that are not steered by a pilot to damage in the event of mid-air collisions and to purely pecuniary damage. The specific legal formulations and their legislative implementation are proposed and discussed here for this purpose.

Novel Advances in Aquatic Vegetation Monitoring in Ocean, Lakes and Rivers

Author:
ISBN: 9783039212057 9783039212064 Year: Pages: 132 DOI: 10.3390/books978-3-03921-206-4 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Environmental Sciences
Added to DOAB on : 2019-12-09 16:10:12
License:

Loading...
Export citation

Choose an application

Abstract

In recent decades, there has been an increase in the development of strategies for water ecosystem mapping and monitoring. Overall, this is primarily due to legislative efforts to improve the quality of water bodies and oceans. Remote sensing has played a key role in the development of such approaches—from the use of drones for vegetation mapping to autonomous vessels for water quality monitoring. Within the specific context of vegetation characterization, the wide range of available observations—from satellite imagery to high-resolution drone aerial imagery—has enabled the development of monitoring and mapping strategies at multiple scales (e.g., micro- and mesoscales). This Special Issue, entitled “Novel Advances in Aquatic Vegetation Monitoring in Ocean, Lakes and Rivers”, collates recent advances in remote sensing-based methods applied to ocean, river, and lake vegetation characterization, including seaweed, kelp, submerged and emergent vegetation, and floating-leaf and free-floating plants. A total of six manuscripts have been compiled in this Special Issue, ranging from area mapping substrates in riverine environments to the identification of macroalgae in marine environments. The work presented leverages current state-of-the-art methods for aquatic vegetation monitoring and will spark further research within this field.

Applications of Photogrammetry for Environmental Research

Authors: ---
ISBN: 9783039281800 9783039281817 Year: Pages: 154 DOI: 10.3390/books978-3-03928-181-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General)
Added to DOAB on : 2020-01-30 16:39:46
License:

Loading...
Export citation

Choose an application

Abstract

The book presents a collection of papers focused on recent progress in key areas of photogrammetry for environmental research. Applications oriented to the understanding of natural phenomena and quantitative processes using dataset from photogrammetry (from satellite to unmanned aerial vehicle images) and terrestrial laser scanning, also by a diachronic approach, are reported. The book covers topics of interest of many disciplines from geography, geomorphology, engineering geology, geotechnology, including landscape description and coastal studies. Mains issues faced by the book are related to applications on coastal monitoring, using multitemporal aerial images, and investigations on geomorphological hazard by the joint use of proximal photogrammetry, terrestrial and aerial laser scanning aimed to the reconstruction of detailed surface topography and successive 2D/3D numerical simulations for rock slope stability analyses. Results reported in the book bring into evidence the fundamental role of multitemporal surveys and reliable reconstruction of morphologies from photogrammetry and laser scanning as support to environmental researches.

Remote Sensing of Leaf Area Index (LAI) and Other Vegetation Parameters

Authors: --- ---
ISBN: 9783039212392 9783039212408 Year: Pages: 334 DOI: 10.3390/books978-3-03921-240-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General)
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Monitoring of vegetation structure and functioning is critical to modeling terrestrial ecosystems and energy cycles. In particular, leaf area index (LAI) is an important structural property of vegetation used in many land surface vegetation, climate, and crop production models. Canopy structure (LAI, fCover, plant height, and biomass) and biochemical parameters (leaf pigmentation and water content) directly influence the radiative transfer process of sunlight in vegetation, determining the amount of radiation measured by passive sensors in the visible and infrared portions of the electromagnetic spectrum. Optical remote sensing (RS) methods build relationships exploiting in situ measurements and/or as outputs of physical canopy radiative transfer models. The increased availability of passive (radar and LiDAR) RS data has fostered their use in many applications for the analysis of land surface properties and processes, thanks also to their insensitivity to weather conditions and the capability to exploit rich structural and textural information. Data fusion and multi-sensor integration techniques are pressing topics to fully exploit the information conveyed by both optical and microwave bands.

Keywords

conifer forest --- leaf area index --- smartphone-based method --- canopy gap fraction --- terrestrial laser scanning --- forest inventory --- density-based clustering --- forest aboveground biomass --- root biomass --- tree heights --- GLAS --- artificial neural network --- allometric scaling and resource limitation --- structure from motion (SfM) --- 3D point cloud --- remote sensing --- local maxima --- fixed tree window size --- managed temperate coniferous forests --- point cloud --- spectral information --- structure from motion (SfM) --- unmanned aerial vehicle (UAV) --- chlorophyll fluorescence (ChlF) --- drought --- Mediterranean --- photochemical reflectance index (PRI) --- photosynthesis --- R690/R630 --- recovery --- BAAPA --- remote sensing --- household survey --- forest --- farm types --- automated classification --- sampling design --- adaptive threshold --- over and understory cover --- LAI --- leaf area index --- EPIC --- simulation --- satellite --- MODIS --- biomass --- evaluation --- southern U.S. forests --- VIIRS --- leaf area index (LAI) --- Fraction of Photosynthetically Active Radiation absorbed by vegetation (FPAR) --- MODIS --- consistency --- uncertainty --- evaluation --- downscaling --- Pléiades imagery --- unmanned aerial vehicle --- stem volume estimation --- remote sensing --- clumping index --- leaf area index --- trunk --- terrestrial LiDAR --- HemiView --- forest above ground biomass (AGB) --- polarization coherence tomography (PCT) --- P-band PolInSAR --- tomographic profiles --- canopy closure --- global positioning system --- hemispherical sky-oriented photo --- signal attenuation --- geographic information system --- digital aerial photograph --- aboveground biomass --- leaf area index --- photogrammetric point cloud --- recursive feature elimination --- machine-learning --- forest degradation --- multisource remote sensing --- modelling aboveground biomass --- random forest --- Brazilian Amazon --- validation --- phenology --- NDVI --- LAI --- spectral analyses --- European beech --- altitude --- forests biomass --- remote sensing --- REDD+ --- random forest --- Tanzania --- RapidEye

Autonomous Control of Unmanned Aerial Vehicles

Author:
ISBN: 9783039210305 9783039210312 Year: Pages: 270 DOI: 10.3390/books978-3-03921-031-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Unmanned aerial vehicles (UAVs) are being increasingly used in different applications in both military and civilian domains. These applications include surveillance, reconnaissance, remote sensing, target acquisition, border patrol, infrastructure monitoring, aerial imaging, industrial inspection, and emergency medical aid. Vehicles that can be considered autonomous must be able to make decisions and react to events without direct intervention by humans. Although some UAVs are able to perform increasingly complex autonomous manoeuvres, most UAVs are not fully autonomous; instead, they are mostly operated remotely by humans. To make UAVs fully autonomous, many technological and algorithmic developments are still required. For instance, UAVs will need to improve their sensing of obstacles and subsequent avoidance. This becomes particularly important as autonomous UAVs start to operate in civilian airspaces that are occupied by other aircraft. The aim of this volume is to bring together the work of leading researchers and practitioners in the field of unmanned aerial vehicles with a common interest in their autonomy. The contributions that are part of this volume present key challenges associated with the autonomous control of unmanned aerial vehicles, and propose solution methodologies to address such challenges, analyse the proposed methodologies, and evaluate their performance.

Data Acquisition and Processing in Cultural Heritage

Authors: --- --- ---
ISBN: 9783039217403 9783039217410 Year: Pages: 276 DOI: 10.3390/books978-3-03921-741-0 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

Advances in the knowledge of the tangible components (position, size, shape) and intangible components (identity, habits) of an historic building or site involves fundamental and complex tasks in any project related to the conservation of cultural heritage (CH). In recent years, new geotechnologies have proven their usefulness and added value to the field of cultural heritage (CH) in the tasks of recording, modeling, conserving, and visualizing. In addition, current developments in building information modeling (HBIM), allow integration and simulation of different sources of information, generating a digital twin of any complex CH construction. As a result, experts in the area have increased the number of available sensors and methodologies. However, the quick evolution of geospatial technologies makes it necessary to revise their use, integration, and application in CH. This process is difficult to adopt, due to the new options which are opened for the study, analysis, management, and valorization of CH. Therefore, the aim of the present Special Issue is to cover the latest relevant topics, trends, and best practices in geospatial technologies and processing methodologies for CH sites and scenarios as well as to introduce the new tendencies. This book originates from the Special Issue “Data Acquisition and Processing in Cultural Heritage”, focusing primarily on data and sensor integration for CH; documentation/restoration in CH; heritage 3D documentation and modeling of complex CH sites; drone inspections in CH; software development in CH; and augmented reality in CH. It is hoped that this book will provide the advice and guidance required for any CH professional, making the best possible use of these sensors and methods in CH.

Swarm Robotics

Author:
ISBN: 9783038979227 9783038979234 Year: Pages: 310 DOI: 10.3390/books978-3-03897-923-4 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Computer Science
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Collectively working robot teams can solve a problem more efficiently than a single robot, while also providing robustness and flexibility to the group. Swarm robotics model is a key component of a cooperative algorithm that controls the behaviors and interactions of all individuals. The robots in the swarm should have some basic functions, such as sensing, communicating, and monitoring, and satisfy the following properties:

Keywords

3D model identification --- shape normalization --- weighted implicit shape representation --- panoramic view --- scale-invariant feature transform --- optimization --- meta-heuristic --- parallel technique --- Swarm intelligence algorithm --- artificial flora (AF) algorithm --- bionic intelligent algorithm --- particle swarm optimization --- artificial bee colony algorithm --- swarm robotics --- search --- surveillance --- behaviors --- patterns --- comparison --- swarm behavior --- Swarm Chemistry --- self-organization --- asymmetrical interaction --- genetic algorithm --- cooperative target hunting --- multi-AUV --- improved potential field --- surface-water environment --- signal source localization --- multi-robot system --- event-triggered communication --- consensus control --- time-difference-of-arrival (TDOA) --- Cramer–Rao low bound (CRLB) --- optimal configuration --- UAV swarms --- path optimization --- multiple robots --- formation --- sliding mode controller --- nonlinear disturbance observer --- system stability --- formation control --- virtual structure --- formation reconfiguration --- multi-agents --- robotics --- unmanned aerial vehicle --- swarm intelligence --- particle swarm optimization --- search algorithm --- underwater environment --- sensor deployment --- event-driven coverage --- fish swarm optimization --- congestion control --- modular robots --- self-assembly robots --- environmental perception --- target recognition --- autonomous docking --- formation control --- virtual linkage --- virtual structure --- formation reconfiguration --- mobile robots --- robotics --- swarm robotics --- formation control --- coordinate motion --- obstacle avoidance --- n/a

Machine Learning Techniques Applied to Geoscience Information System and Remote Sensing

Authors: ---
ISBN: 9783039212156 9783039212163 Year: Pages: 438 DOI: 10.3390/books978-3-03921-216-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Mechanical Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

As computer and space technologies have been developed, geoscience information systems (GIS) and remote sensing (RS) technologies, which deal with the geospatial information, have been rapidly maturing. Moreover, over the last few decades, machine learning techniques including artificial neural network (ANN), deep learning, decision tree, and support vector machine (SVM) have been successfully applied to geospatial science and engineering research fields. The machine learning techniques have been widely applied to GIS and RS research fields and have recently produced valuable results in the areas of geoscience, environment, natural hazards, and natural resources. This book is a collection representing novel contributions detailing machine learning techniques as applied to geoscience information systems and remote sensing.

Keywords

landslide --- bagging ensemble --- Logistic Model Trees --- GIS --- Vietnam --- colorization --- random forest regression --- grayscale aerial image --- change detection --- gully erosion --- environmental variables --- data mining techniques --- SCAI --- GIS --- mapping --- single-class data descriptors --- materia medica resource --- Panax notoginseng --- one-class classifiers --- geoherb --- change detection --- convolutional network --- deep learning --- panchromatic --- remote sensing --- remote sensing image segmentation --- convolutional neural networks --- Gaofen-2 --- hybrid structure convolutional neural networks --- winter wheat spatial distribution --- classification-based learning --- real-time precise point positioning --- convergence time --- ionospheric delay constraints --- precise weighting --- landslide --- weights of evidence --- logistic regression --- random forest --- hybrid model --- traffic CO --- traffic CO prediction --- neural networks --- GIS --- land use/land cover (LULC) --- unmanned aerial vehicle --- texture --- gray-level co-occurrence matrix --- machine learning --- crop --- landslide susceptibility --- random forest --- boosted regression tree --- information gain --- landslide susceptibility map --- ALS point cloud --- multi-scale --- classification --- large scene --- coarse particle --- particulate matter 10 (PM10) --- landsat image --- machine learning --- support vector machine --- high-resolution --- optical remote sensing --- object detection --- deep learning --- transfer learning --- land subsidence --- Bayes net --- naïve Bayes --- logistic --- multilayer perceptron --- logit boost --- change detection --- convolutional network --- deep learning --- panchromatic --- remote sensing --- leaf area index (LAI) --- machine learning --- Sentinel-2 --- sensitivity analysis --- training sample size --- spectral bands --- spatial sparse recovery --- constrained spatial smoothing --- spatial spline regression --- alternating direction method of multipliers --- landslide prediction --- machine learning --- neural networks --- model switching --- spatial predictive models --- predictive accuracy --- model assessment --- variable selection --- feature selection --- model validation --- spatial predictions --- reproducible research --- Qaidam Basin --- remote sensing --- TRMM --- artificial neural network --- n/a

Remote Sensing for Target Object Detection and Identification

Authors: --- ---
ISBN: 9783039283323 9783039283330 Year: Pages: 336 DOI: 10.3390/books978-3-03928-333-0 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Geography
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

Target object detection and identification are among the primary uses for a remote sensing system. This is crucial in several fields, including environmental and urban monitoring, hazard and disaster management, and defense and military. In recent years, these analyses have used the tremendous amount of data acquired by sensors mounted on satellite, airborne, and unmanned aerial vehicle (UAV) platforms. This book promotes papers exploiting different remote sensing data for target object detection and identification, such as synthetic aperture radar (SAR) imaging and multispectral and hyperspectral imaging. Several cutting-edge contributions, which provide examples of how to select of a technology or another depending on the specific application, will be detailed.

Keywords

anomaly detection --- hyperspectral imagery --- low-rank representation --- dictionary construction --- HSI reconstruction --- sparse coding --- adaptive weighting --- infrared small target detection --- local prior analysis --- nonconvex tensor robust principle component analysis --- partial sum of the tensor nuclear norm --- low rank sparse decomposition --- Lp-norm constraint --- non-convex optimization --- alternating direction method of multipliers --- infrared small target detection --- convolutional neural networks (CNNs) --- object detection --- remote sensing images --- contextual information --- part-based --- multi-model --- very-high-resolution (VHR) remote sensing imagery --- object detection --- multi-scale pyramidal features --- multi-scale strategies --- oil tank detection --- unsupervised saliency model --- Color Markov Chain --- bottom-up and top-down --- hazard prevention --- flood hazard --- hidden danger identification --- tower failure --- vehicle detection --- object matching --- superpixel segmentation --- unmanned aerial vehicle --- remote sensing imagery --- thermal infrared target tracking --- semantic features --- mask sparse representation --- particle filter framework --- ADMM --- satellite videos --- region proposals --- convolutional neural networks --- tiny and dim target detection --- component mixture model --- object detection --- remote sensing image --- deep learning --- convolutional neural networks (CNNs) --- hardware architecture --- processor --- ground-based detection --- infrared imaging --- observability --- detecting distance --- earth entry vehicle --- synthetic aperture radar (SAR) --- rivers water-flow elevation estimation --- pixel-tracking --- phase unwrapping --- infrared small-faint target detection --- non-independent and identical distribution (non-i.i.d.) mixture of Gaussians --- flux density --- variational Bayesian --- target detection --- target identification --- SAR --- visible --- infrared --- hyperspectral

Remote Sensing based Building Extraction

Authors: --- --- ---
ISBN: 9783039283828 9783039283835 Year: Pages: 442 DOI: 10.3390/books978-3-03928-383-5 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Construction
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

Building extraction from remote sensing data plays an important role in urban planning, disaster management, navigation, updating geographic databases, and several other geospatial applications. Even though significant research has been carried out for more than two decades, the success of automatic building extraction and modeling is still largely impeded by scene complexity, incomplete cue extraction, and sensor dependency of data. Most recently, deep neural networks (DNN) have been widely applied for high classification accuracy in various areas including land-cover and land-use classification. Therefore, intelligent and innovative algorithms are needed for the success of automatic building extraction and modeling. This Special Issue focuses on newly developed methods for classification and feature extraction from remote sensing data for automatic building extraction and 3D

Keywords

roof segmentation --- outline extraction --- convolutional neural network --- boundary regulated network --- very high resolution imagery --- building boundary extraction --- convolutional neural network --- active contour model --- high resolution optical images --- LiDAR --- richer convolution features --- building edges detection --- high spatial resolution remote sensing imagery --- building --- modelling --- reconstruction --- change detection --- LiDAR --- point cloud --- 3-D --- building extraction --- deep learning --- attention mechanism --- very high resolution --- imagery --- building detection --- aerial images --- feature-level-fusion --- straight-line segment matching --- occlusion --- building regularization technique --- point clouds --- boundary extraction --- regularization --- building reconstruction --- digital building height --- 3D urban expansion --- land-use --- DTM extraction --- open data --- developing city --- accuracy analysis --- building detection --- building index --- feature extraction --- mathematical morphology --- morphological attribute filter --- morphological profile --- building extraction --- deep learning --- semantic segmentation --- data fusion --- high-resolution satellite images --- GIS data --- high-resolution aerial images --- deep learning --- generative adversarial network --- semantic segmentation --- Inria aerial image labeling dataset --- Massachusetts buildings dataset --- building extraction --- simple linear iterative clustering (SLIC) --- multiscale Siamese convolutional networks (MSCNs) --- binary decision network --- unmanned aerial vehicle (UAV) --- image fusion --- high spatial resolution remotely sensed imagery --- object recognition --- deep learning --- method comparison --- LiDAR point cloud --- building extraction --- elevation map --- Gabor filter --- feature fusion --- semantic segmentation --- urban building extraction --- deep convolutional neural network --- VHR remote sensing imagery --- U-Net --- remote sensing --- deep learning --- building extraction --- web-net --- ultra-hierarchical sampling --- 3D reconstruction --- indoor modelling --- mobile laser scanning --- point clouds --- 5G signal simulation --- building extraction --- high-resolution aerial imagery --- fully convolutional network --- semantic segmentation --- n/a

Listing 1 - 10 of 15 << page
of 2
>>
Sort by
Narrow your search