Search results: Found 2

Listing 1 - 2 of 2
Sort by
Repetitive DNA Sequences

Authors: --- --- ---
ISBN: 9783039283668 9783039283675 Year: Pages: 206 DOI: 10.3390/books978-3-03928-367-5 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Genetics
Added to DOAB on : 2020-04-07 23:07:08
License:

Loading...
Export citation

Choose an application

Abstract

Repetitive DNA is ubiquitous in eukaryotic genomes, and, in many species, comprises the bulk of the genome. Repeats include transposable elements that can self-mobilize and disperse around the genome, and tandemly-repeated satellite DNAs that increase in copy number due to replication slippage and unequal crossing over. Despite their abundance, repetitive DNA is often ignored in genomic studies due to technical challenges in their identification, assembly, and quantification. New technologies and methods are now providing the unprecedented power to analyze repetitive DNAs across diverse taxa. Repetitive DNA is of particular interest because it can represent distinct modes of genome evolution. Some repetitive DNA forms essential genome structures, such as telomeres and centromeres, which are required for proper chromosome maintenance and segregation, whereas others form piRNA clusters that regulate transposable elements; thus, these elements are expected to evolve under purifying selection. In contrast, other repeats evolve selfishly and produce genetic conflicts with their host species that drive adaptive evolution of host defense systems. However, the majority of repeats likely accumulate in eukaryotes in the absence of selection due to mechanisms of transposition and unequal crossing over. Even these neutral repeats may indirectly influence genome evolution as they reach high abundance. In this Special Issue, the contributing authors explore these questions from a range of perspectives.

Molecular Advances in Wheat and Barley

Author:
ISBN: 9783039213719 9783039213726 Year: Pages: 290 DOI: 10.3390/books978-3-03921-372-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Allohexaploid bread wheat and diploid barley are two of the most cultivated crops in the world. This book reports novel research and reviews concerning the use of modern technologies to understand the molecular bases for wheat and barley improvement. The contributions published in this book illustrate research advances in wheat and barley knowledge using modern molecular techniques. These molecular approaches cover genomic, transcriptomic, proteomic, and phenomic levels, together with new tools for gene identification and the development of novel molecular markers. Overall, the contributions for this book lead to a further understanding of regulatory systems in order to improve wheat and barley performance.

Keywords

Triticum durum --- Aegilops tauschii --- Triticum aestivum --- marker-trait associations --- genes --- bread wheat --- genetic biofortification --- favorable alleles --- allohexaploid --- homoeolog --- hybrid necrosis --- molecular marker --- wheat --- wheat --- rye --- 6R --- small segment translocation --- powdery mildew --- transgenic wheat --- 12-oxophytodienoate reductase --- jasmonates --- freezing tolerance --- HIGS --- transgene --- wheat --- barley --- cereal cyst nematodes --- wheat --- barely --- breeding --- biotechnology --- resistance --- Triticum aestivum --- Landrace --- Powdery mildew --- Bulked segregant analysis-RNA-Seq (BSR-Seq) --- Single nucleotide polymorphism (SNP) --- Kompetitive Allele Specific PCR (KASP) --- Blumeria graminis f. sp. tritici --- protein two-dimensional electrophoresis --- mass spectrometry --- Pm40 --- Barley --- Grain development --- Transcriptional dynamics --- RNA editing --- RNA-seq --- durum wheat --- Tunisian landraces --- center of diversity --- genetic diversity --- population structure --- DArTseq technology --- chromatin --- 3D-FISH --- nucleus --- introgression --- rye --- hybrid --- wheat --- genome stability --- wheat --- Thinopyrum --- chromosome --- ND-FISH --- oligo probe --- barley --- wheat --- protease --- germination --- grain --- abiotic stress --- antioxidant enzymes --- aquaporin --- TdPIP2 --- 1 --- histochemical analysis --- transgenic wheat --- transpiration --- wheat --- Aegilops tauschii --- Lr42 --- disease resistance --- molecular mapping --- KASP markers --- marker-assisted selection --- phytase --- wheat --- barley --- purple acid phosphatase phytase --- PAPhy --- mature grain phytase activity (MGPA) --- genome assembly --- bread wheat --- barley --- optical mapping --- BAC --- ribosomal DNA --- cereals --- CRISPR --- crops --- genetic engineering --- genome editing --- plant --- Triticeae --- n/a

Listing 1 - 2 of 2
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (2)


License

CC by-nc-nd (2)


Language

english (2)


Year
From To Submit

2020 (1)

2019 (1)