Search results: Found 5

Listing 1 - 5 of 5
Sort by
Machine Learning Techniques Applied to Geoscience Information System and Remote Sensing

Authors: ---
ISBN: 9783039212156 9783039212163 Year: Pages: 438 DOI: 10.3390/books978-3-03921-216-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Mechanical Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

As computer and space technologies have been developed, geoscience information systems (GIS) and remote sensing (RS) technologies, which deal with the geospatial information, have been rapidly maturing. Moreover, over the last few decades, machine learning techniques including artificial neural network (ANN), deep learning, decision tree, and support vector machine (SVM) have been successfully applied to geospatial science and engineering research fields. The machine learning techniques have been widely applied to GIS and RS research fields and have recently produced valuable results in the areas of geoscience, environment, natural hazards, and natural resources. This book is a collection representing novel contributions detailing machine learning techniques as applied to geoscience information systems and remote sensing.

Keywords

landslide --- bagging ensemble --- Logistic Model Trees --- GIS --- Vietnam --- colorization --- random forest regression --- grayscale aerial image --- change detection --- gully erosion --- environmental variables --- data mining techniques --- SCAI --- GIS --- mapping --- single-class data descriptors --- materia medica resource --- Panax notoginseng --- one-class classifiers --- geoherb --- change detection --- convolutional network --- deep learning --- panchromatic --- remote sensing --- remote sensing image segmentation --- convolutional neural networks --- Gaofen-2 --- hybrid structure convolutional neural networks --- winter wheat spatial distribution --- classification-based learning --- real-time precise point positioning --- convergence time --- ionospheric delay constraints --- precise weighting --- landslide --- weights of evidence --- logistic regression --- random forest --- hybrid model --- traffic CO --- traffic CO prediction --- neural networks --- GIS --- land use/land cover (LULC) --- unmanned aerial vehicle --- texture --- gray-level co-occurrence matrix --- machine learning --- crop --- landslide susceptibility --- random forest --- boosted regression tree --- information gain --- landslide susceptibility map --- ALS point cloud --- multi-scale --- classification --- large scene --- coarse particle --- particulate matter 10 (PM10) --- landsat image --- machine learning --- support vector machine --- high-resolution --- optical remote sensing --- object detection --- deep learning --- transfer learning --- land subsidence --- Bayes net --- naïve Bayes --- logistic --- multilayer perceptron --- logit boost --- change detection --- convolutional network --- deep learning --- panchromatic --- remote sensing --- leaf area index (LAI) --- machine learning --- Sentinel-2 --- sensitivity analysis --- training sample size --- spectral bands --- spatial sparse recovery --- constrained spatial smoothing --- spatial spline regression --- alternating direction method of multipliers --- landslide prediction --- machine learning --- neural networks --- model switching --- spatial predictive models --- predictive accuracy --- model assessment --- variable selection --- feature selection --- model validation --- spatial predictions --- reproducible research --- Qaidam Basin --- remote sensing --- TRMM --- artificial neural network --- n/a

Deep Learning Applications with Practical Measured Results in Electronics Industries

Authors: --- --- ---
ISBN: 9783039288632 / 9783039288649 Year: Pages: 272 DOI: 10.3390/books978-3-03928-864-9 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

This book collects 14 articles from the Special Issue entitled “Deep Learning Applications with Practical Measured Results in Electronics Industries” of Electronics. Topics covered in this Issue include four main parts: (1) environmental information analyses and predictions, (2) unmanned aerial vehicle (UAV) and object tracking applications, (3) measurement and denoising techniques, and (4) recommendation systems and education systems. These authors used and improved deep learning techniques (e.g., ResNet (deep residual network), Faster-RCNN (faster regions with convolutional neural network), LSTM (long short term memory), ConvLSTM (convolutional LSTM), GAN (generative adversarial network), etc.) to analyze and denoise measured data in a variety of applications and services (e.g., wind speed prediction, air quality prediction, underground mine applications, neural audio caption, etc.). Several practical experiments were conducted, and the results indicate that the performance of the presented deep learning methods is improved compared with the performance of conventional machine learning methods.

Keywords

computational intelligence --- offshore wind --- forecasting --- machine learning --- neural networks --- neuro-fuzzy systems --- humidity sensor --- data fusion --- nonlinear optimization --- multiple linear regression --- GSA-BP --- geometric errors correction --- kinematic modelling --- lateral stage errors --- Imaging Confocal Microscope --- K-means clustering --- data partition --- Least Squares method --- deep learning --- multivariate time series forecasting --- multivariate temporal convolutional network --- CNN --- hyperspectral image classification --- information measure --- transfer learning --- neighborhood noise reduction --- visual tracking --- update occasion --- update mechanism --- background model --- network layer contribution --- saliency information --- geometric errors --- rigid body kinematics --- lateral stage errors --- imaging confocal microscope --- MCM uncertainty evaluation --- dot grid target --- smart grid --- foreign object --- binary classification --- convolutional network --- image inpainting --- content reconstruction --- instance segmentation --- underground mines --- intelligent surveillance --- residual networks --- compressed sensing --- image compression --- image restoration --- discrete wavelet transform --- intelligent tire manufacturing --- digital shearography --- faster region-based CNN --- tire bubble defects --- tire quality assessment --- unmanned aerial vehicle --- UAV --- trajectory planning --- GA --- A* --- multiple constraints --- recommender system --- human computer interaction --- eye-tracking device --- deep learning --- oral evaluation --- generative adversarial network --- neural audio caption --- gated recurrent unit --- long short-term memory --- deep learning --- machine learning --- supervised learning --- unsupervised learning --- reinforcement learning --- optimization techniques

Intelligent Imaging and Analysis

Authors: ---
ISBN: 9783039219209 9783039219216 Year: Pages: 492 DOI: 10.3390/books978-3-03921-921-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-04-07 23:07:08
License:

Loading...
Export citation

Choose an application

Abstract

Imaging and analysis are widely involved in various research fields, including biomedical applications, medical imaging and diagnosis, computer vision, autonomous driving, and robot controls. Imaging and analysis are now facing big changes regarding intelligence, due to the breakthroughs of artificial intelligence techniques, including deep learning. Many difficulties in image generation, reconstruction, de-noising skills, artifact removal, segmentation, detection, and control tasks are being overcome with the help of advanced artificial intelligence approaches. This Special Issue focuses on the latest developments of learning-based intelligent imaging techniques and subsequent analyses, which include photographic imaging, medical imaging, detection, segmentation, medical diagnosis, computer vision, and vision-based robot control. These latest technological developments will be shared through this Special Issue for the various researchers who are involved with imaging itself, or are using image data and analysis for their own specific purposes.

Keywords

image inspection --- non-referential method --- feature extraction --- fault pattern learning --- weighted kernel density estimation (WKDE) --- rail surface defect --- UAV image --- defect detection --- gray stretch maximum entropy --- image enhancement --- defect segmentation --- semi-automatic segmentation --- MR spine image --- vertebral body --- graph-based segmentation --- correlation --- surface defect of steel sheet --- image segmentation --- saliency detection --- low-rank and sparse decomposition --- intervertebral disc --- segmentation --- convolutional neural network --- fine grain segmentation --- U-net --- deep learning --- magnetic resonance image --- lumbar spine --- image adjustment --- colorfulness --- contrast --- sharpness --- high dynamic range --- local registration --- iterative closest points --- multimodal medical image registration --- machine vision --- point cloud registration --- greedy projection triangulation --- local correlation --- three-dimensional imaging --- optimization arrangement --- cavitation bubble --- water hydraulic valve --- defect inspection --- image processing --- feature extraction --- classification methods --- medical image registration --- image alignment in medical images --- misalignment correction in MRI --- midsagittal plane extraction --- symmetry detection --- PCA --- conformal mapping --- mesh parameterization --- mesh partitioning --- pixel extraction --- texture mapping --- image analysis --- image retrieval --- spatial information --- image classification --- computer vision --- image restoration --- motion deburring --- image denoising --- sparse feedback --- Image processing --- segmentation --- spline --- grey level co-occurrence matrix --- gradient detection --- threshold selection --- OpenCV --- machine learning --- transfer learning --- Inception-v3 --- geological structure images --- convolutional neural networks --- image segmentation --- active contour model --- level set --- signed pressure force function --- image segmentation --- deep learning --- synthetic aperture radar (SAR) --- oil slicks --- segnet --- pectus excavatum --- nuss procedure --- patient-specific nuss bar --- minimally invasive surgery --- computerized numerical control bending machine --- computer-aided design --- computer-aided manufacturing --- statistical body shape model --- self-intersection penalty term --- 3D pose estimation --- 3D semantic mapping --- incrementally probabilistic fusion --- CRF regularization --- road scenes --- deep learning --- medical image classification --- additional learning --- CT image --- automatic training --- GoogLeNet --- intelligent evaluation --- automated cover tests --- deviation of strabismus --- pupil localization --- shape from focus --- wear measurement --- sprocket teeth --- normal distribution operator image filtering --- adaptive evaluation window --- reverse engineering --- human parsing --- depth-estimation --- computational efficiency --- capacity optimization --- underwater visual localization method --- line segment features --- PL-SLAM --- face sketch synthesis --- face sketch recognition --- joint training model --- data imbalance --- Contrast Tomography (CT) --- pre-training strategy --- segmentation --- super-resolution --- dual-channel --- residual block --- convolutional kernel parameter --- long-term and short-term memory blocks --- n/a

Learning to Understand Remote Sensing Images

Author:
ISBN: 9783038976844 9783038976851 Year: Volume: 1 Pages: 426 DOI: 10.3390/books978-3-03897-685-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Computer Science
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

With the recent advances in remote sensing technologies for Earth observation, many different remote sensors are collecting data with distinctive properties. The obtained data are so large and complex that analyzing them manually becomes impractical or even impossible. Therefore, understanding remote sensing images effectively, in connection with physics, has been the primary concern of the remote sensing research community in recent years. For this purpose, machine learning is thought to be a promising technique because it can make the system learn to improve itself. With this distinctive characteristic, the algorithms will be more adaptive, automatic, and intelligent. This book introduces some of the most challenging issues of machine learning in the field of remote sensing, and the latest advanced technologies developed for different applications. It integrates with multi-source/multi-temporal/multi-scale data, and mainly focuses on learning to understand remote sensing images. Particularly, it presents many more effective techniques based on the popular concepts of deep learning and big data to reach new heights of data understanding. Through reporting recent advances in the machine learning approaches towards analyzing and understanding remote sensing images, this book can help readers become more familiar with knowledge frontier and foster an increased interest in this field.

Keywords

hyperspectral image classification --- SELF --- SVMs --- Segment-Tree Filtering --- multi-sensor --- change feature analysis --- object-based --- multispectral images --- heterogeneous domain adaptation --- transfer learning --- multi-view canonical correlation analysis ensemble --- semi-supervised learning --- canonical correlation weighted voting --- ensemble learning --- image classification --- spatial attraction model (SAM) --- subpixel mapping (SPM) --- land cover --- mixed pixel --- spatial distribution --- hard classification --- building damage detection --- Fuzzy-GA decision making system --- machine learning techniques --- optical remotely sensed images --- sensitivity analysis --- texture analysis --- quality assessment --- ratio images --- Synthetic Aperture Radar (SAR) --- speckle --- speckle filters --- ice concentration --- SAR imagery --- convolutional neural network --- urban surface water extraction --- threshold stability --- sub-pixel --- linear spectral unmixing --- Landsat imagery --- image registration --- image fusion --- UAV --- metadata --- visible light and infrared integrated camera --- semantic segmentation --- CNN --- deep learning --- ISPRS --- remote sensing --- gate --- hyperspectral image --- sparse and low-rank graph --- tensor --- dimensionality reduction --- semantic labeling --- convolution neural network --- fully convolutional network --- sea-land segmentation --- ship detection --- hyperspectral image --- target detection --- multi-task learning --- sparse representation --- locality information --- remote sensing image correction --- color matching --- optimal transport --- CNN --- very high resolution images --- segmentation --- multi-scale clustering --- vehicle localization --- vehicle classification --- high resolution --- aerial image --- convolutional neural network (CNN) --- class imbalance --- deep learning --- convolutional neural network (CNN) --- fully convolutional network (FCN) --- classification --- remote sensing --- high resolution --- semantic segmentation --- deep convolutional neural networks --- manifold ranking --- single stream optimization --- high resolution image --- feature extraction --- hypergraph learning --- morphological profiles --- hyperedge weight estimation --- semantic labeling --- convolutional neural networks --- remote sensing --- deep learning --- aerial images --- hyperspectral image --- feature extraction --- dimensionality reduction --- optimized kernel minimum noise fraction (OKMNF) --- hyperspectral remote sensing --- endmember extraction --- multi-objective --- particle swarm optimization --- image alignment --- feature matching --- geostationary satellite remote sensing image --- GSHHG database --- Hough transform --- dictionary learning --- road detection --- Radon transform --- geo-referencing --- multi-sensor image matching --- Siamese neural network --- satellite images --- synthetic aperture radar --- inundation mapping --- flood --- optical sensors --- spatiotemporal context learning --- Modest AdaBoost --- HJ-1A/B CCD --- GF-4 PMS --- hyperspectral image classification --- automatic cluster number determination --- adaptive convolutional kernels --- hyperspectral imagery --- 1-dimensional (1-D) --- Convolutional Neural Network (CNN) --- Support Vector Machine (SVM) --- Random Forests (RF) --- machine learning --- deep learning --- TensorFlow --- multi-seasonal --- regional land cover --- saliency analysis --- remote sensing --- ROI detection --- hyperparameter sparse representation --- dictionary learning --- energy distribution optimizing --- multispectral imagery --- nonlinear classification --- kernel method --- dimensionality expansion --- deep convolutional neural networks --- road segmentation --- conditional random fields --- satellite images --- aerial images --- THEOS --- land cover change --- downscaling --- sub-pixel change detection --- machine learning --- MODIS --- Landsat --- very high resolution (VHR) satellite image --- topic modelling --- object-based image analysis --- image segmentation --- unsupervised classification --- multiscale representation --- GeoEye-1 --- wavelet transform --- fuzzy neural network --- remote sensing --- conservation --- urban heat island --- land surface temperature --- climate change --- land use --- land cover --- Landsat --- remote sensing --- SAR image --- despeckling --- dilated convolution --- skip connection --- residual learning --- scene classification --- saliency detection --- deep salient feature --- anti-noise transfer network --- DSFATN --- infrared image --- image registration --- MSER --- phase congruency --- hashing --- remote sensing image retrieval --- online learning --- hyperspectral image --- compressive sensing --- structured sparsity --- tensor sparse decomposition --- tensor low-rank approximation

Learning to Understand Remote Sensing Images

Author:
ISBN: 9783038976981 9783038976998 Year: Volume: 2 Pages: 376 DOI: 10.3390/books978-3-03897-699-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Computer Science
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

With the recent advances in remote sensing technologies for Earth observation, many different remote sensors are collecting data with distinctive properties. The obtained data are so large and complex that analyzing them manually becomes impractical or even impossible. Therefore, understanding remote sensing images effectively, in connection with physics, has been the primary concern of the remote sensing research community in recent years. For this purpose, machine learning is thought to be a promising technique because it can make the system learn to improve itself. With this distinctive characteristic, the algorithms will be more adaptive, automatic, and intelligent. This book introduces some of the most challenging issues of machine learning in the field of remote sensing, and the latest advanced technologies developed for different applications. It integrates with multi-source/multi-temporal/multi-scale data, and mainly focuses on learning to understand remote sensing images. Particularly, it presents many more effective techniques based on the popular concepts of deep learning and big data to reach new heights of data understanding. Through reporting recent advances in the machine learning approaches towards analyzing and understanding remote sensing images, this book can help readers become more familiar with knowledge frontier and foster an increased interest in this field.

Keywords

hyperspectral image classification --- SELF --- SVMs --- Segment-Tree Filtering --- multi-sensor --- change feature analysis --- object-based --- multispectral images --- heterogeneous domain adaptation --- transfer learning --- multi-view canonical correlation analysis ensemble --- semi-supervised learning --- canonical correlation weighted voting --- ensemble learning --- image classification --- spatial attraction model (SAM) --- subpixel mapping (SPM) --- land cover --- mixed pixel --- spatial distribution --- hard classification --- building damage detection --- Fuzzy-GA decision making system --- machine learning techniques --- optical remotely sensed images --- sensitivity analysis --- texture analysis --- quality assessment --- ratio images --- Synthetic Aperture Radar (SAR) --- speckle --- speckle filters --- ice concentration --- SAR imagery --- convolutional neural network --- urban surface water extraction --- threshold stability --- sub-pixel --- linear spectral unmixing --- Landsat imagery --- image registration --- image fusion --- UAV --- metadata --- visible light and infrared integrated camera --- semantic segmentation --- CNN --- deep learning --- ISPRS --- remote sensing --- gate --- hyperspectral image --- sparse and low-rank graph --- tensor --- dimensionality reduction --- semantic labeling --- convolution neural network --- fully convolutional network --- sea-land segmentation --- ship detection --- hyperspectral image --- target detection --- multi-task learning --- sparse representation --- locality information --- remote sensing image correction --- color matching --- optimal transport --- CNN --- very high resolution images --- segmentation --- multi-scale clustering --- vehicle localization --- vehicle classification --- high resolution --- aerial image --- convolutional neural network (CNN) --- class imbalance --- deep learning --- convolutional neural network (CNN) --- fully convolutional network (FCN) --- classification --- remote sensing --- high resolution --- semantic segmentation --- deep convolutional neural networks --- manifold ranking --- single stream optimization --- high resolution image --- feature extraction --- hypergraph learning --- morphological profiles --- hyperedge weight estimation --- semantic labeling --- convolutional neural networks --- remote sensing --- deep learning --- aerial images --- hyperspectral image --- feature extraction --- dimensionality reduction --- optimized kernel minimum noise fraction (OKMNF) --- hyperspectral remote sensing --- endmember extraction --- multi-objective --- particle swarm optimization --- image alignment --- feature matching --- geostationary satellite remote sensing image --- GSHHG database --- Hough transform --- dictionary learning --- road detection --- Radon transform --- geo-referencing --- multi-sensor image matching --- Siamese neural network --- satellite images --- synthetic aperture radar --- inundation mapping --- flood --- optical sensors --- spatiotemporal context learning --- Modest AdaBoost --- HJ-1A/B CCD --- GF-4 PMS --- hyperspectral image classification --- automatic cluster number determination --- adaptive convolutional kernels --- hyperspectral imagery --- 1-dimensional (1-D) --- Convolutional Neural Network (CNN) --- Support Vector Machine (SVM) --- Random Forests (RF) --- machine learning --- deep learning --- TensorFlow --- multi-seasonal --- regional land cover --- saliency analysis --- remote sensing --- ROI detection --- hyperparameter sparse representation --- dictionary learning --- energy distribution optimizing --- multispectral imagery --- nonlinear classification --- kernel method --- dimensionality expansion --- deep convolutional neural networks --- road segmentation --- conditional random fields --- satellite images --- aerial images --- THEOS --- land cover change --- downscaling --- sub-pixel change detection --- machine learning --- MODIS --- Landsat --- very high resolution (VHR) satellite image --- topic modelling --- object-based image analysis --- image segmentation --- unsupervised classification --- multiscale representation --- GeoEye-1 --- wavelet transform --- fuzzy neural network --- remote sensing --- conservation --- urban heat island --- land surface temperature --- climate change --- land use --- land cover --- Landsat --- remote sensing --- SAR image --- despeckling --- dilated convolution --- skip connection --- residual learning --- scene classification --- saliency detection --- deep salient feature --- anti-noise transfer network --- DSFATN --- infrared image --- image registration --- MSER --- phase congruency --- hashing --- remote sensing image retrieval --- online learning --- hyperspectral image --- compressive sensing --- structured sparsity --- tensor sparse decomposition --- tensor low-rank approximation

Listing 1 - 5 of 5
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (5)


License

CC by-nc-nd (5)


Language

english (4)

eng (1)


Year
From To Submit

2020 (2)

2019 (3)