Search results:
Found 7
Listing 1 - 7 of 7 |
Sort by
|
Choose an application
Plant medicines are the original medicines that humans have always used. Many people continue to use plant medicines today including teas, coffee, chocolate, ginger, and other medicines. Traditional medicine is based on plant medicines and is the primary form of medicine for many people throughout the world. The current volume discusses traditional medicines and presents various plant medicines that could be tested in clinical trials. Modern medicine continues to use many drugs that are derived from plants. The current work has much to teach modern medicine about the treatment of several diseases. Traditional healers have used plant medicines to treat psychiatric and other conditions that modern medicine struggles with. Safety issues are always a concern with plant medicines, especially allergies to plant medicines. Clinical trials must be conducted with plant medicines to help bring these traditional treatments into use by modern medicine.
traditional medicine --- plant medicines --- clinical trials
Choose an application
In this chapter, I explore the regulation of alternative and traditional medicine, in order to reflect on how particular temporalities shape, and are shaped by, the interface between law and medicine. This chapter makes two key points: first, it argues that both biomedicine and law have relied on a particular sense of ‘modernity’ as a linear temporal process; in turn, this has been key in developing both crude, and more subtle, social patterns of power, dominance, and exclusion that continue to impact on contemporary societies. Second, it argues that as law increasingly engages in the regulation of other types of medicine, it continues to emulate biomedical models and assumptions as to what ‘modern medicine’ should look like, including its temporal features. This chapter is written as I am starting a large investigation of the multiple ways in which traditional and alternative medicines apprehend and are apprehended by law in several states in Europe and Africa.2 Although the project has several aims, my interest in the field came, in part, from the ambivalent and complex ways in which the idea of ‘modernity’ seemed to be shaping the field and, in turn, how law and medicine as institutions were involved in this ambivalence. It is useful, to ‘set the scene’ of this chapter, to return to this briefly.
alternative medicine --- traditional medicine --- law --- medicine
Choose an application
In modern societies the functional differentiation of medicine and religion is the predominant paradigm. Contemporary therapeutic practices and concepts in healing systems, such as Transpersonal Psychology, Ayurveda, as well as Buddhist and Anthroposophic medicine, however, are shaped by medical as well as religious or spiritual elements. This book investigates configurations of the entanglement between medicine, religion, and spirituality in Europe, Asia, North America, and Africa. How do political and legal conditions affect these healing systems? How do they relate to religious and scientific discourses? How do therapeutic practitioners position themselves between medicine and religion, and what is their appeal for patients?
Religion --- Spirituality --- Entanglement --- CAM --- Traditional Medicine --- Medicine --- Religious Studies --- Body --- Care
Choose an application
Oral health is general health. If the oral cavity is kept healthy, the whole body is always healthy. Bacteria in the oral cavity do not stay in the oral cavity, but rather they travel throughout the body and can induce various diseases. Periodontal pathogens are involved in tooth loss. The number of remaining teeth decreases with age. People with more residual teeth can bite food well and live longer with lower incidence of dementia. There are many viruses in the oral cavity that also cause various diseases. Bacteria and viruses induce and aggravate inflammation, and therefore should be removed from the oral cavity. In the natural world, there are are many as yet undiscovered antiviral, antibacterial and anti-inflammatory substances. These natural substances, as well as chemically modified derivatives, help our oral health and lead us to more fulfilling, high quality lives. This Special Issue, entitled “Biological Efficacy of Natural and Chemically Modified Products against Oral Inflammatory Lesions”, was written by specialists from a diverse variety of fields. It serves to provide readers with up-to-date information on incidence rates in each age group, etiology and treatment of stomatitis, and to investigate the application of such treatments as oral care and cosmetic materials.
metabolomics --- oral cell --- benzaldehyde --- eugenol --- inflammation --- cytotoxicity --- stomatitis --- recurrent aphthous stomatitis --- oral lichen planus --- CCN2 --- glucocorticoids --- alkaloids --- anti-human immunodeficiency virus (HIV) --- antiviral --- natural product --- human virus --- inflammatory disease --- stomatitis --- periodontitis --- anti-osteoclast activity --- cepharanthin --- herbal medicine --- natural product --- arachidonic acid cascade --- allergic rhinitis --- mice --- quercetin --- thioredoxin --- nasal epithelial cell --- production --- increase --- in vitro --- in vivo --- nutritionally variant streptococci --- antimicrobial susceptibilities --- oral microbiota --- infective endocarditis --- kampo formula --- traditional Japanese herbal medicine --- stomatitis --- mucositis --- Hangeshashinto --- polyphenol --- chromone --- lignin-carbohydrate complex --- alkaline extract --- Kampo medicine --- glucosyltransferase --- angiotensin II blocker --- QSAR analysis --- oral diseases --- dental application --- Chinese herbal remedies --- stomatitis --- periodontitis --- Kampo --- traditional medicine --- Jixueteng --- Juzentaihoto --- technical terms --- gargle --- tongue diagnosis --- mastic --- pathogenic factors --- quantitative structure-activity relationship --- machine learning --- random forest --- natural products --- tumour-specificity --- Kampo medicine --- constituent plant extract --- stomatitis --- oral inflammation --- quantitative structure-activity relationship (QSAR) analysis --- metabolomics
Choose an application
The book entitled Medicinal Plants and Natural Product Research describes various aspects of ethnopharmacological uses of medicinal plants; extraction, isolation, and identification of bioactive compounds from medicinal plants; various aspects of biological activity such as antioxidant, antimicrobial, anticancer, immunomodulatory activity, etc., as well as characterization of plant secondary metabolites as active substances from medicinal plants.
Chrysanthemum coronarium L. --- aerial parts --- caffeoylquinic acids --- Malian medicinal plants --- Biophytum umbraculum --- Burkea africana --- Lannea velutina --- Terminalia macroptera --- medicinal plants --- traditional knowledge --- Eastern Himalayas --- mountain plants --- ethnobotany --- ethnopharmacology --- bioprospecting --- antibiotic resistance --- antimicrobial --- mechanism of action --- plant metabolite --- saline habitats --- secondary metabolites --- adaptation --- different solvents --- antibiotic resistance --- antimicrobial activity --- cytotoxicity --- ethnobotany --- Eucalyptus --- natural products --- Pseudomonas aeruginosa --- stingless bees --- Tetragonula --- traditional medicine --- basil varieties --- essential oil --- GC-MS --- harvest --- cluster analysis --- antimicrobial --- antioxidants --- medicinal plants --- BHT --- Ficus hirta --- Moraceae --- carboline alkaloids --- sesquiterpenoids --- flavonoids --- antifungal --- phytochemicals --- Nirgundi --- chaste tree --- antibacterial --- free radical --- scavenger --- oxidative stress --- P. alliaceae --- P. niruri --- S. reticulata --- UPLC --- TQ-ESI-MS --- proanthocyanidins --- mass spectrometry --- antioxidant --- cytotoxicity --- Moringa oleifera --- DPPH --- antioxidant activity --- oxidative stress --- sickle cell anemia --- Ophiopogon --- Liriope --- rbcL --- DNA barcoding --- high-resolution melt curve (HRM) analysis --- allergy --- inflammation --- mast cells --- Immulina® --- immunLoges® --- anthracene derivatives --- antimicrobial --- Asphodelus --- ethnomedicine --- skin diseases --- plant-food --- processing --- nutraceuticals --- inflammation --- health --- Arbutus unedo L. --- ?-glucosidase --- catechin --- HPLC --- NMR --- activity --- bioproduct --- Brunfelsia --- Amazonian --- Ecuador --- ethnobotanic --- ayahuasca --- validation --- drug discovery --- scopoletin
Choose an application
Natural products hold a prominent position in the current discovery and development of drugs and have diverse indications for both human and animal health. Plants, in particular, play a leading role as a source of specialized metabolites with medical effects. Other organisms, such as marine and terrestrial animals and microorganisms, produce very important drug candidate molecules. Specialized metabolites from these varied natural sources can be used directly as bioactive compounds or drug precursors. In addition, due to their broad chemical diversity, they can act as drug prototypes and/or be used as pharmacological tools for different targets. Some examples of natural metabolites that have been developed into useful medical drug are cardiotonic digoxin from Digitalis sp., antimalarial artemisinin from Artemisia annua, anti-cancer taxol from Taxus sp., or podophyllotoxin from Podophyllum peltatum, which served as a synthetic model for the anti-cancer etoposide. The study of natural products is still attracting great scientific attention and their current importance, as a valuable lead for drug discovery, is undebatable. I cordially invite authors to contribute original articles, as well as survey articles, that give the readers of Molecules **MOLECULES NEEDS TO BE ITALICIZED** updated and new perspectives on natural products in drug discovery, including but not limited to natural sources, identification and separation of bioactive phytochemicals, standardization, new biological targets, pre-clinical and clinical trials, pharmacological effects/side effects, and bioassays.
cytotoxicity-guided --- phenolic derivatives --- Dryopteris fragrans --- chemical derivatization --- immuno-regulation activity --- Imperata cylindrica --- HPLC --- ESI-MS/MS --- growth inhibitory activity --- cancer --- cardamonin --- antinociceptive --- TRPV1 --- glutamate --- opioid --- siphonous green algae --- sulfated coumarins --- Dasycladus vermicularis --- isolation and quantification --- Orobanche s.l. --- Orobanchaceae --- Lamiales --- natural products --- secondary metabolites --- phenylpropanoid glycosides --- phenylethanoid glycosides --- bioactivities of natural products --- chemosystematics --- FSE --- T2DM --- GLUT4 --- Ca2+ --- L6 cell --- marine peptides --- proliferation --- migration --- angiogenesis --- zebrafish --- antioxidant activity --- flavonoids --- isoflavones --- phenolics --- proanthocyanidins --- Trifolium --- Leea indica --- HPLC-ESI-microTOF-Q-MS/MS --- phenolics --- dihydrochalcones --- Humulus lupulus --- prenylated phenolic compounds --- antimicrobial agents --- methicillin-resistant Staphylococcus aureus --- Leishmania mexicana mexicana --- Trypanosoma brucei brucei --- Astragalus boeticus L. --- spectroscopic analysis --- cytotoxic activity --- human colon cancer cell lines --- acetylated astragalosides --- Fabaceae --- aging --- cancer --- cardiovascular disease --- dementia --- diabetes --- inflammation --- oxidative stress --- Harpagophytum procumbens --- devil’s claw --- harpagoside --- spagyric tincture --- antioxidant activity --- Cleistocalyx operculatus --- 2?,4?-dihydroxy-6?-methoxy-3?,5?-dimethylchalcone (DMC) --- pPancreatic cancer --- PANC-1 --- ACE inhibitory peptide --- antihypertensive --- bioactive peptides --- hypertension --- marine resources --- terpenes --- terpenoids --- antimicrobial resistance --- synergy --- Phyllanthus orbicularis --- C-glycoside --- flavonoid --- natural products --- traditional medicine --- Cuba --- Phyllanthus chamacristoides --- chromatography --- mass spectrometry --- NMR --- circular dichroism --- stereochemistry --- Fideloside --- cytokines --- anti-inflammatory activity --- metabolomics --- multivariate data analysis --- molecular network --- Bacopa monnieri --- LC-MS --- diabetic neuropathy --- neuropathic pain --- glucosinolates --- Eruca sativa --- glucoerucin --- H2S --- Kv7 potassium channels --- artemisinin --- Physcomitrella patens --- sesquiterpenoids --- malaria --- biotechnology --- ketamine --- psychosis --- cerebellum --- celastrol --- oxidative stress --- NADPH oxidases --- n/a
Choose an application
Plants have served mankind as an important source of foods and medicines. While we all consume plants and their products for nutritional support, a majority of the world population also rely on botanical remedies to meet their health needs, either as their own “traditional medicine” or as “complementary and alternative medicine”. From a pharmaceutical point of view, many compounds obtained from plant sources have long been known to possess bio/pharmacological activities, and historically, plants have yielded many important drugs for human use, from morphine discovered in the early nineteenth century to the more recent paclitaxel and artemisinin. Today, we are witnessing a global resurgence in interest and use of plant-based therapies and botanical products, and natural products remain an important and viable source of lead compounds in many drug discovery programs.This Special Issue on “Plant Natural Products for Human Health” compiles a series of scientific reports to demonstrate the medicinal potentials of plant natural products. It covers a range of disease targets, such as diabetes, inflammation, cancer, neurological disease, cardiovascular disease, liver damage, bacterial, and fungus infection and malarial. These papers provide important insights into the current state of research on drug discovery and new techniques. It is hoped that this Special Issue will serve as a timely reference for researchers and scholars who are interested in the discovery of potentially useful molecules from plant sources for health-related applications.
heat-process --- onion --- calorie restriction --- Amadori rearrangement compounds --- hyperglycemia --- A549 cells --- hinokitiol --- MMPs --- p53/Bax --- antioxidant enzymes --- caspases --- migration --- cannabinoid type 1 receptor --- endoplasmic reticulum stress --- gluconeogenesis --- gomisin N --- lipogenesis --- insulin resistance --- garlic --- ischemia --- heme oxygenase --- reperfusion --- heart --- Keap1 --- Nrf2 --- Neuroprotective --- PC12 cells --- PhGs --- anti-malaria activity --- plants --- natural products --- ethnopharmacology --- Plasmodium parasites --- copaiba --- oleoresin --- essential oil --- sesquiterpenoids --- diterpenoids --- biological activity --- molecular targets --- Astragali Radix --- astragaloside IV --- genistein --- mitochondrial bioenergetics --- oxygen consumption rate --- natural products --- drug design and development --- innovation --- automation --- computational softwares --- bioinformatics --- precision medicine --- omics --- global health --- sweet orange --- bitter orange --- neroli --- orange petitgrain --- mandarin --- lemon --- lime --- grapefruit --- bergamot --- yuzu --- kumquat --- cannabigerol --- Cannabis sativa --- neuroinflammation --- oxidative stress --- phytocannabinoid --- iridoids --- nuclear factor-kappaB --- mitogen-activated protein kinase --- anti-inflammation --- Ziziphus jujuba --- triterpenic acids --- pharmacokinetic study --- acute liver injury --- A? --- AD --- lychee seed --- neuroinflammation --- catechin --- procyanidin A2 --- apoptosis --- cinnamamides --- antistaphylococcal activity --- time-kill assay --- biofilm --- antitubercular activity --- MTT assay --- antifungal activity --- PET inhibition --- toxicity --- structure–activity relationship --- bleeding time --- flavonoid --- morin hydrate --- OH· free radical --- platelet activation --- protein kinase --- thromboembolism --- Glycyrrhiza uralensis --- prenylated flavonoids --- antiproliferation --- differentiation --- melanoma cell --- adjuvant-induced arthritis --- arthritis --- celastrol --- curcumin --- dietary supplements --- EGCG --- green tea --- inflammation --- liposomes --- microbiome --- nanoparticles --- natural products --- resveratrol --- rheumatoid arthritis --- targeted delivery --- traditional medicine --- Tripterygium wilfordii --- triptolide --- Penthorum chinense Pursh --- NAFLD --- hepatic steatosis --- flavonoids --- SIRT1 --- AMPK --- dihydromyricetin --- myocardial hypertrophy --- oxidative stress --- sirtuin 3 --- ginseng --- human-hair-follicle dermal papilla cells --- WNT/?-catenin --- Shh/Gli --- TGF-? --- BMP/Smad --- mouse-hair growth --- Panax notoginseng saponins --- aspirin --- HepaRG cells --- herb–drug interactions --- P. eryngii --- glucans --- inflammation --- inflammatory bowel disease --- medicinal plants --- phytochemicals --- scoulerine --- bergapten --- immunomodulator --- adjuvant --- cytoxicity --- dendritic cells --- immune modulation --- APAP --- acetaminophen --- hepatotoxicity --- hpatoprotection --- paracetamol --- animals --- preclinical studies --- natural products --- small molecules --- phytochemicals --- plants --- fucoidan --- acetaminophen --- Nrf2 --- oxidative stress --- hepatotoxicity --- plant natural product --- drug discovery --- human health
Listing 1 - 7 of 7 |
Sort by
|