Search results: Found 2

Listing 1 - 2 of 2
Sort by
Synthesis and Applications of Biopolymer Composites

Authors: ---
ISBN: 9783039211326 9783039211333 Year: Pages: 312 DOI: 10.3390/books978-3-03921-133-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- Chemical Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

This book, as a collection of 17 research articles, provides a selection of the most recent advances in the synthesis, characterization, and applications of environmentally friendly and biodegradable biopolymer composites and nanocomposites. Recently, the demand has been growing for a clean and pollution-free environment and an evident target regarding the minimization of fossil fuel usage. Therefore, much attention has been focused on research to replace petroleum-based commodity plastics by biodegradable materials arising from biological and renewable resources. Biopolymers—polymers produced from natural sources either chemically from a biological material or biosynthesized by living organisms—are suitable alternatives for addressing these issues due to their outstanding properties, including good barrier performance, biodegradation ability, and low weight. However, they generally possess poor mechanical properties, a short fatigue life, low chemical resistance, poor long-term durability, and limited processing capability. In order to overcome these deficiencies, biopolymers can be reinforced with fillers or nanofillers (with at least one of their dimensions in the nanometer range). Bionanocomposites are advantageous for a wide range of applications, such as in medicine, pharmaceutics, cosmetics, food packaging, agriculture, forestry, electronics, transport, construction, and many more.

Keywords

nanocellulose --- protease sensor --- human neutrophil elastase --- peptide-cellulose conformation --- aerogel --- glycol chitosan --- ?-tocopherol succinate --- amphiphilic polymer --- micelles --- paclitaxel --- chitosan --- PVA --- nanofibers --- electrospinning --- nanocellulose --- carbon nanotubes --- nanocomposite --- conductivity --- surfactant --- Poly(propylene carbonate) --- thermoplastic polyurethane --- compatibility --- toughness --- biopolyester --- compatibilizer --- cellulose --- elastomer --- toughening --- biodisintegration --- heat deflection temperature --- biopolymers composites --- MgO whiskers --- PLLA --- in vitro degradation --- natural rubber --- plasticized starch --- polyfunctional monomers --- physical and mechanical properties --- cross-link density --- water uptake --- chitosan --- deoxycholic acid --- folic acid --- amphiphilic polymer --- micelles --- paclitaxel --- silk fibroin --- glass transition --- DMA --- FTIR --- stress-strain --- active packaging materials --- alginate films --- antimicrobial agents --- antioxidant activity --- biodegradable films --- essential oils --- polycarbonate --- thermal decomposition kinetics --- TG/FTIR --- Py-GC/MS --- wheat gluten --- potato protein --- chemical pre-treatment --- structural profile --- tensile properties --- biocomposites --- natural fibers --- poly(3-hydroxybutyrate-3-hydroxyvalerate) --- biodegradation --- impact properties --- chitin nanofibrils --- poly(lactic acid) --- nanocomposites --- bio-based polymers --- natural fibers --- biomass --- biocomposites --- fiber/matrix adhesion --- bio-composites --- mechanical properties --- poly(lactic acid) --- cellulose fibers --- n/a

Bio-Based Polymers for Engineered Green Materials

Authors: ---
ISBN: 9783039289257 / 9783039289264 Year: Pages: 568 DOI: 10.3390/books978-3-03928-926-4 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

With daily signals, Nature is communicating us that its unconscious wicked exploitation is no more sustainable. Our socio-economic system focuses on production increasing without considering the consequences. We are intoxicating ourselves on a daily bases just to allow the system to perpetuate itself. The time to switch into more natural solutions is come and the scientific community is ready to offer more natural product with comparable performance then the market products we are used to deal with. This book collects a broad set of scientific examples in which research groups from all over the world, aim to replace fossil fuel-based solutions with biomass derived materials. In here, some of the most innovative developments in the field of bio-materials are reported considering topics which goes from biomass valorization to the synthesis of high preforming bio-based materials.

Keywords

thermoplastic starch --- corn starch --- chitosan --- crosslinked microparticles --- lignin-containing cellulose nanofibrils --- poly(lactic acid) and composite films --- lignin content --- compatibility --- adsorption --- phenanthrene --- pyrene --- benzoyl cellulose --- stearoyl cellulose --- silkworm cocoons --- dense structure --- porosity --- robust fiber network --- mechanical properties --- photodegradation --- liquid natural rubber --- UV light --- TiO2 anatase --- latex state --- wood modification --- alkali lignin --- water resistance --- dimensional stability --- heat treatment --- polymeric composites --- antifouling --- metal binding --- iron chelation --- polydopamine coating --- free-radical polymerization --- galactoglucomannan --- lignin --- lignin-carbohydrate complex --- ultrafiltration --- precipitation --- hydrogel --- recycling --- thermal degradation --- mechanical degradation --- polylactic acid --- Bioflex --- Solanyl --- PHBV --- poly(lactic acid) --- pulp fibers --- biocomposite --- emulsion-solvent evaporation method --- films --- mechanical properties --- PHA --- mixed microbial cultures --- bioplastics --- feast-famine --- cost --- Peptone --- Microbial nutrient --- Anti-bacterial silver nanoparticle --- Escherichia coli --- Staphylococcus aureus --- tannin --- hemicellulose --- waste biomass --- HSQC-NMR --- pyrolysis mechanism --- hydrotropic treatment --- metal chloride --- delignification --- enzymatic saccharification --- lignocellulosic nanofibrils --- microencapsulated phase change material (MPCM) --- polylactic acid (PLA) --- toughening --- endothermic effect --- kenaf fiber --- hybrid composites --- bio-based --- film --- mechanical properties --- polysaccharides --- resource recovery --- solution casting --- orange waste --- nanocelluloses --- cellulose nanofibers --- cellulose nanocrystals --- bacterial cellulose --- cement --- fiber-cement --- Hatscheck process --- bio-inspired interfaces --- mechanical properties --- thermal stability --- sensitivity --- electrospinning --- tissue engineering --- paper-based scaffolds --- osteoblast proliferation --- polycaprolactone --- biopolymers --- nanoclays --- nanobiocomposites --- extrusion-compounding --- polyhydroxyalkanoates --- thermal properties --- mechanical properties --- differential scanning calorimetry --- nuclear magnetic resonance --- X-ray diffraction --- transparent wood --- chemical composition --- H2O2 bleaching treatment --- physicochemical properties --- cellulose --- electrical resistance --- copper coating --- electroless deposition --- humidity sensor --- strain sensor --- lyocell fiber --- asphalt rubber --- bio-asphalt --- mixing sequence --- workability --- storage stability --- tung oil --- unsaturated polyester resins --- thermosetting polymers --- structure–property relationship --- structural plastics --- ONP fibers --- silanization --- composites --- mechanical properties --- Artemisia vulgaris --- microcellulose fiber --- nanocellulose fibers --- natural fibers --- Bio-based foams --- wastewater treatments --- cationic dyes --- anionic surfactants --- pollutant adsorbents --- tannin polymer --- tannin-furanic foam --- biopolymers --- nanoclays --- bio-nanocomposites --- extrusion-compounding --- polyhydroxyalkanoates --- thermal properties --- microstructure --- volatiles --- autoxidation --- thermal gravimetric analysis --- scanning electron microscope --- headspace solid phase microextraction --- alginate sponge --- two-step lyophilization --- methylene blue --- adsorption capacity --- biomass resources --- hybrid nonisocyanate polyurethane --- solvent- and catalyst-free --- dimer acid --- melt condensation --- bacterial cellulose --- surface modification --- TEMPO oxidation --- one-pot synthesis --- immobilized TEMPO --- physical property --- skincare --- cellulose --- graphene oxide --- ionic liquid --- membrane --- transport properties --- heavy metals --- porous structure --- SAXS --- WAXS --- cellulose --- wood --- lignocellulose --- ionic liquid --- imidazolium --- fractionation --- dissolution --- GC-MS --- kaempferol --- knotwood --- larixol --- taxifolin --- vibrational spectroscopy --- n/a

Listing 1 - 2 of 2
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (2)


License

CC by-nc-nd (2)


Language

eng (1)

english (1)


Year
From To Submit

2020 (1)

2019 (1)