Search results: Found 7

Listing 1 - 7 of 7
Sort by
Microenvironment-Derived Stem Cell Plasticity

Authors: --- --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889453443 Year: Pages: 114 DOI: 10.3389/978-2-88945-344-3 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Biology --- Medicine (General) --- Allergy and Immunology
Added to DOAB on : 2018-02-27 16:16:45
License:

Loading...
Export citation

Choose an application

Abstract

Plasticity is the hallmark of stem cells. At the same time, stem cells, like any other cell type, are influenced by their microenvironment and respond to it accordingly. A specific microenvironment is defined by a variety of factors, including biological and chemical factors, cell-cell interactions, but also metabolic and mechanical cues. Such dynamic and specialized microenvironment where the stem cells reside is considered a stem cell niche. Tissue injury as well as malignant tissue alterations lead to changes in the niche influencing the plasticity and biology of residing stem cells. Similarly, the niche changes upon tissue damage, which eventually induces differentiation of stem cells and ultimately regeneration of the tissue.

Signaling Pathways in Developing and Pathological Tissues and Organs of the Craniofacial Complex

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889456116 Year: Pages: 281 DOI: 10.3389/978-2-88945-611-6 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Physiology
Added to DOAB on : 2019-01-23 14:53:43
License:

Loading...
Export citation

Choose an application

Abstract

Head formation requires the well-orchestrated and harmonised development of various tissues and organs within the craniofacial complex. A big variety of signaling pathways are involved in this process by controlling cell proliferation, migration, differentiation, tissue morphogenesis, homeostasis and regeneration. Deregulation and malfunction of these signaling molecules may lead to mild or severe craniofacial pathologies. This eBook is a collection of articles dealing with a variety of important signals involved in the control of developmental and pathological events of craniofacial organs and tissues. These recent advances show the importance of signaling pathways in craniofacial physiology and pathology and generate important new knowledge aiming the development of new pharmaceutical products that mimic and/or block the actions of specific molecules.

Novel Biomaterials for Tissue Engineering 2018

Author:
ISBN: 9783038975434 9783038975441 Year: Pages: 426 DOI: 10.3390/books978-3-03897-544-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Biotechnology --- General and Civil Engineering --- Materials
Added to DOAB on : 2019-02-05 10:26:51
License:

Loading...
Export citation

Choose an application

Abstract

The concept of regenerating tissues, with properties and functions that mimic natural tissues, has attracted significant attention in recent years. It provides potential solutions for treating many diseases and other healthcare issues. To fully realize the potential of the approach, it is crucial to have a rational biomaterial design to create novel scaffolds, and other materials systems suitable for tissue engineering, repair and regeneration. Research advances on the topic include the design of new biomaterials and their composites, the scaffold fabrication via subtractive and additive manufacturing approaches, the development of implantable scaffolds for disease monitoring, diagnostics, and treatment, as well as the understanding of cells–biomaterial scaffolds interaction. This Special Issue, “Novel Biomaterials for Tissue Engineering”, covers a selection of timely research activities in the field of biomaterials for tissue engineering and regeneration purposes. Promising findings on different approaches to design and develop new biomaterials, biomaterial systems and methods for tissue engineering, are presented and discussed. Recent advances in biofabrication techniques for tissue engineering are additionally demonstrated. The issue comprises a series of state-of-the-art experimental works, up-to-date review articles and commentaries.

Soft and Hard Tissue Regeneration

Authors: ---
ISBN: 9783039283040 9783039283057 Year: Pages: 86 DOI: 10.3390/books978-3-03928-305-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Dentistry
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

This special issue entitled “Soft and hard tissue regeneration” will cover both periodontal and implant therapies. Regenerative periodontal treatment goal is to restore functional periodontal support offering a valuable treatment alternative even for teeth with large periodontal destruction, which may be successfully treated and maintained in health for long periods. In most cases where teeth are extracted for periodontal reasons, implant therapy will demand large bone augmentation procedures. Lack of sufficient bone volume may prevent placement of dental implants. In extreme cases, large bone reconstruction is indispensable before implant placement can be performed. Although, most bone grafts are only able to fill and maintain a space, where bone regeneration can occur (“osseoconductive”), the ideal bone graft will also promote osseous regeneration (“osseoinductive”). Several bone augmentation procedures have been described, each, presenting advantages and shortcomings. Success of bone augmentation procedures depends on the presence of bone forming cells, primary wound closure over the augmented area, space creation and maintenance where bone can grow and proper angiogenesis of the grafted area. Factors that influence the choice of the surgical technique are the estimated duration of surgical procedure, its complexity, cost, total estimated length of procedure until the final rehabilitations may be installed and the surgeons’ experience. This special issue will have a definite clinical orientation, and be entirely dedicated to soft and hard tissue regenerative treatment alternatives, both in periodontal and implant therapy, discussing their rationale, indications and clinical procedures. Internationally renowned leading researchers and clinicians will contribute with articles in their field of expertize.

Mixed Matrix Membranes

Author:
ISBN: 9783039219766 9783039219773 Year: Pages: 146 DOI: 10.3390/books978-3-03921-977-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- Chemical Engineering
Added to DOAB on : 2020-01-07 09:08:26
License:

Loading...
Export citation

Choose an application

Abstract

Mixed matrix membranes (MMMs) have attracted a large amount of interest in research laboratories worldwide in recent decades, motivated by the gap between a growing interest in developing novel mixed matrix membranes by various research groups and the lack of large-scale implementation. This Special Issue contains six publications dealing with the current opportunities and challenges of mixed matrix membranes development and applications to solve environmental and health challenges of the society of 21st century.

Electrospun Nanofibers for Biomedical Applications

Authors: --- ---
ISBN: 9783039287741 / 9783039287758 Year: Pages: 308 DOI: 10.3390/books978-3-03928-775-8 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General)
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Electrospinning is a versatile and effective technique widely used to manufacture nanofibrous structures from a diversity of materials (synthetic, natural or inorganic). The electrospun nanofibrous meshes’ composition, morphology, porosity, and surface functionality support the development of advanced solutions for many biomedical applications. The Special Issue on “Electrospun Nanofibers for Biomedical Applications” assembles a set of original and highly-innovative contributions showcasing advanced devices and therapies based on or involving electrospun meshes. It comprises 13 original research papers covering topics that span from biomaterial scaffolds’ structure and functionalization, nanocomposites, antibacterial nanofibrous systems, wound dressings, monitoring devices, electrical stimulation, bone tissue engineering to first-in-human clinical trials. This publication also includes four review papers focused on drug delivery and tissue engineering applications.

Keywords

sol-gel --- electrospinning --- hydroxyapatite --- nanofiber --- antibacterial --- titanium --- antibacterial coatings --- electrospinning --- nanocomposite coatings --- TiO2 photocatalytic --- orthopedic infections --- electrospinning --- 3D printing --- nanofibers --- encapsulation --- protein diffusion --- in vivo tissue engineering --- immuno-isolation --- transplantation --- electrospinning --- sputtering --- drug delivery --- wound dressing --- biocompatibility --- tissue engineering --- biomimetic scaffolds --- gelatin --- electrospinning --- micromolding --- biomaterials --- poly(lactic acid) (PLLA) --- bioactive glass --- scaffolds --- electrospinning --- composite fibres --- bone regeneration --- poly(vinylidene fluoride) --- composite nanofiber --- piezoelectricity --- antioxidant activity --- well-aligned nanofibers --- P(VDF-TrFE) --- piezoelectric nanogenerator --- preosteoblasts electrospinning --- silicone modified polyurethane nanofibers --- physical properties --- cell attachment --- cell proliferation --- cytotoxicity --- biopolymers --- packaging --- pharmaceutical --- biomedical --- electrospinning --- alginate --- gelatin fibers --- ZnO particles --- antibacterial activity --- electrospinning --- nanofibers --- fabrication --- therapeutics --- biomedical applications --- antibody immobilization --- electrospun nanofibers --- TNF-? capture --- human articular chondrocytes --- rheumatoid arthritis --- nanofibers --- microfluidic chip --- electrospinning --- live assay --- hepatocellular carcinoma cells --- PLA95 --- biocompatibility --- guided tissue regeneration (GTR) --- electrospinning --- electrospun fiber mats --- mechanobiology --- glioblastoma --- biomaterials --- finite element modeling --- electrospun nanofibers --- cancer treatment --- drug release --- nanomedicine --- biocompatible polymers --- hyperthermia

Biomaterials for Bone Tissue Engineering

Author:
ISBN: 9783039289653 / 9783039289660 Year: Pages: 244 DOI: 10.3390/books978-3-03928-966-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Bone tissue engineering aims to develop artificial bone substitutes that partially or totally restore the natural regeneration capability of bone tissue lost under circumstances of injury, significant defects, or diseases such as osteoporosis. In this context, biomaterials are the keystone of the methodology. Biomaterials for bone tissue engineering have evolved from biocompatible materials that mimic the physical and chemical environment of bone tissue to a new generation of materials that actively interacts with the physiological environment, accelerating bone tissue growth. Mathematical modelling and simulation are important tools in the overall methodology. This book presents an overview of the current investigations and recent contributions in the field of bone tissue engineering. It includes several successful examples of multidisciplinary collaboration in this transversal area of research. The book is intended for students, researchers, and professionals of a number of disciplines, such as engineering, mathematics, physics, chemistry, biomedicine, biology, and veterinary. The book is composed of an editorial section and 16 original research papers authored by leading researchers of this discipline from different laboratories across the world

Keywords

Pelvis --- Bone tumor --- 3D-printed implant --- Fixation design --- von Mises stress --- dental implants --- osseointegration --- resonance frequency analysis --- biomaterials --- titanium --- powder metallurgy --- loose sintering --- finite element method --- mechanical behaviour --- bone tissue regeneration --- computed tomography --- Xenografts --- stem cell --- cartilage --- finite element --- finite-element simulation --- electric stimulation --- bone regeneration --- computational modelling --- electrically active implants --- bioelectromagnetism --- critical size defect --- maxillofacial --- minipig --- oxygen delivery --- optimization --- mass transfer --- transport --- bone tissue engineering --- computational fluid dynamics --- Lattice Boltzmann method --- scaffold design --- culturing protocol --- Lagrangian scalar tracking --- cortical bone --- damage --- finite elements --- numerical results --- adipogenesis --- bone marrow --- MSCs --- prediction marker --- bone tissue --- elastoplasticity --- finite element method --- fracture risk --- osteoporosis --- trabeculae --- trabecular bone score --- vertebra --- biomechanics --- finite element modelling --- pelvis --- bone adaptation --- musculoskeletal modelling --- bone tissue engineering --- biomaterials --- computational mechanobiology --- numerical methods in bioengineering --- Ti6Al4V scaffolds --- triply periodic minimal surfaces --- selective laser melting --- additive manufacturing --- biomaterial applications --- finite element analysis --- spark plasma sintering --- wollastonite --- human dental pulp stem cells --- substrate-mediated electrical stimulation --- direct current electric field --- osteo-differentiation --- bone morphogenesis proteins --- cortical bone --- digital image correlation --- multiscale analysis --- micromechanics --- computational mechanics --- cone beam computed tomography --- automatic segmentation --- sliding window --- 3D virtual surgical plan --- Otsu’s method --- n/a

Listing 1 - 7 of 7
Sort by
Narrow your search