Search results: Found 8

Listing 1 - 8 of 8
Sort by
Nanocelluloses: Synthesis, Modification and Applications

Author:
ISBN: 9783039287840 / 9783039287857 Year: Pages: 142 DOI: 10.3390/books978-3-03928-785-7 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- Biotechnology
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Nanocelluloses: Synthesis, Modification and Applications is a book that provides some recent enhancements of various types of nanocellulose, mainly bacterial nanocellulose, cellulose nanocrystals and nanofibrils, and their nanocomposites. Bioactive bacterial nanocellulose finds applications in biomedical applications, https://doi.org/10.3390/nano9101352. Grafting and cross-linking bacterial nanocellulose modification emerges as a good choice for improving the potential of bacterial nanocellulose in such biomedical applications as topical wound dressings and tissue-engineering scaffolds, https://doi.org/10.3390/nano9121668. On the other hand, bacterial nanocellulose can be used as paper additive for fluorescent paper, https://doi.org/10.3390/nano9091322, and for the reinforcement of paper made from recycled fibers, https://doi.org/10.3390/nano9010058. Nanocellulose membranes are used for up-to-date carbon capture applications, https://doi.org/10.3390/nano9060877. Nanocellulose has been applied as a novel component of membranes designed to address a large spectrum of filtration problems, https://doi.org/10.3390/nano9060867. Poly(vinyl alcohol) (PVA) and cellulose nanocrystals (CNC) in random composite mats prepared using the electrospinning method are widely characterized in a large range of physical chemical aspects, https://doi.org/10.3390/nano9050805. Similarly, physical chemical aspects are emphasized for carboxylated cellulose nanofibrils produced by ammonium persulfate oxidation combined with ultrasonic and mechanical treatment, https://doi.org/10.3390/nano8090640. It is extraordinary how nanocellulose can find application in such different fields. Along the same lines, the contributions in this book come from numerous different countries, confirming the great interest of the scientific community for nanocellulose.

Biomass Chars: Elaboration, Characterization and Applications ?

Authors: ---
ISBN: 9783039216628 9783039216635 Year: Pages: 342 DOI: 10.3390/books978-3-03921-663-5 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Agriculture (General) --- Biology --- Science (General)
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Biomass can be converted to energy, biofuels, and bioproducts via thermochemical conversion processes, such as combustion, pyrolysis, and gasification. Combustion technology is most widely applied on an industrial scale. However, biomass gasification and pyrolysis processes are still in the research and development stage. The major products from these processes are syngas, bio-oil, and char (called also biochar for agronomic application). Among these products, biomass chars have received increasing attention for different applications, such as gasification, co-combustion, catalysts or adsorbents precursors, soil amendment, carbon fuel cells, and supercapacitors. This Special Issue provides an overview of biomass char production methods (pyrolysis, hydrothermal carbonization, etc.), characterization techniques (e.g., scanning electronic microscopy, X-ray fluorescence, nitrogen adsorption, Raman spectroscopy, nuclear magnetic resonance spectroscopy, X-ray photoelectron spectroscopy, and temperature programmed desorption and mass spectrometry), their properties, and their suitable recovery processes.

Keywords

biomass production --- multicriteria model --- ELECTRE III --- combustion --- oxygen enrichment --- low-rank coal char --- char oxidation --- reaction kinetics --- salty food waste --- FT-IR --- pyrolysis --- biochar --- NaCl --- hydrothermal carbonization --- anaerobic digestion --- poultry slaughterhouse --- sludge cake --- energy recovery efficiency --- gasification --- kinetic model --- active site --- chemisorption --- hydrothermal carbonization (HTC) --- Chinese reed --- biocrude --- biochar --- high heating value (HHV) --- biochar --- steam --- gasification --- chemical speciation --- AAEMs --- underground coal gasification --- ash layer --- effective diffusion coefficient --- internal diffusion resistance --- pyrolysis --- hydrothermal carbonization --- biochar engineering --- porosity --- nutrients --- polycyclic aromatic hydrocarbon (PAH) --- nitrogen --- biomass --- amino acid --- pyrrole --- NOx --- pyrolysis --- grape marc --- kinetic models --- characterization --- pyrolysis --- Texaco pilot plant --- reactor modelling --- ash fusion temperature (AFT) --- melting phenomenon --- food waste compost --- sawdust --- pyrolysis --- biochar --- thermogravimetric analysis (TGA) --- calorific value --- biogas purification --- coconut shells --- biomass valorization --- textural characterization --- adsorption isotherms --- breakthrough curves --- olive mill solid wastes (OMSWs) --- fixed bed combustor --- pellets --- combustion parameters --- gaseous emissions --- waste wood --- interactions --- interferences --- partial combustion reaction in gasification --- Boudouard reaction in gasification --- MTDATA --- biomass --- steam gasification --- kinetics --- pyrolysis conditions --- thermogravimetric analysis --- characteristic time analysis --- biomass --- combustion --- thermogravimetric analysis --- kinetic parameters --- thermal characteristics --- food waste --- food-waste biochar --- pyrolysis --- NaCl template --- desalination --- biochar --- ash from biomass --- giant miscanthus --- fertilisation --- CO2 adsorption --- CH4 adsorption --- biomass --- activated carbon --- n/a

Ionic Liquid Crystals

Author:
ISBN: 9783039210862 9783039210879 Year: Pages: 108 DOI: 10.3390/books978-3-03921-087-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- Chemical Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

In this book we have collected a series of state-of-the art papers written by specialists in the field of ionic liquid crystals (ILCs) to address key questions concerning the synthesis, properties, and applications of ILCs. New compounds exhibiting ionic liquid crystalline phases are presented, both of calamitic as well as discotic type. Their dynamic and structural properties have been investigated with a series of experimental techniques including differential scanning calorimetry, polarized optical spectroscopy, X-ray scattering, and nuclear magnetic resonance, impedance spectroscopy to mention but a few. Moreover, computer simulations using both fully atomistic and highly coarse-grained force fields have been presented, offering an invaluable microscopic view of the structure and dynamics of these fascinating materials.

Functional Polymers for Controlled Drug Release

Author:
ISBN: 9783039284900 9783039284917 Year: Pages: 204 DOI: 10.3390/books978-3-03928-491-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Therapeutics
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

This Special Issue focuses on the synthesis and characterization of hydrogels specifically used as carriers of biological molecules for pharmaceutical and biomedical employments. Pharmaceutical applications of hydrophilic materials has emerged as one of the most significant trends in the area of nanotechnology. To propose some of the latest findings in this field, each contribution involves an in-depth analysis including different starting materials and their physico-chemical and biological properties with the aim of synthetizing high-performing devices for specific use. In this context, intelligent polymeric devices able to be morphologically modified in response to an internal or external stimulus, such as pH or temperature, have been actively pursued. In general, hydrophilic polymeric materials lead to high in vitro and/or in vivo therapeutic efficacy, with programmed site-specific feature showing remarkable potential for targeted therapy. This Special Issue serves to highlight and capture the contemporary progress in this field. Relevant resources and people to approach - American Association Pharmaceutical Scientists (AAPS): web: www.aaps.org; email: (marketing division): Marketing@aaps.org; (mmeting division): Meetings@aaps.org - International Association for Pharmaceutical Technology (APV): web: apv-mainz.de; email (managing director):

Ceramic Conductors

Authors: ---
ISBN: 9783038979562 9783038979579 Year: Pages: 184 DOI: 10.3390/books978-3-03897-957-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Physics (General)
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

This Special Issue of Crystals contains papers focusing on various properties of conducting ceramics. Multiple aspects of both the research and application of this group of materials have been addressed. Conducting ceramics are the wide group of mostly oxide materials which play crucial roles in various technical applications, especially in the context of the harvesting and storage of energy. Without ion-conducting oxides, such as yttria-stabilized zirconia, doped ceria devices such as solid oxide fuel cells would not exist, not to mention the wide group of other ion conductors which can be applied in batteries or even electrolyzers, besides fuel cells. The works published in this Special Issue tackle experimental results as well as general theoretical trends in the field of ceramic conductors, or electroceramics, as it is often referred to.

Polymeric Foams

Authors: ---
ISBN: 9783039216321 9783039216338 Year: Pages: 322 DOI: 10.3390/books978-3-03921-633-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- Chemical Engineering
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

Advances in nanotechnology have boosted the development of more efficient materials, with emerging sectors (electronics, energy, aerospace, etc.) demanding novel materials to fulfill the complex technical requirements of their products. This is the case of polymeric foams, which may display good structural properties alongside functional characteristics through a complex composition and (micro)structure in which a gas phase is combined with rigid ones, mainly based on nanoparticles, dispersed throughout the polymer matrix. In recent years, there has been an important impulse in the development of nanocomposite foams, extending the concept of nanocomposites to the field of cellular materials. This, alongside developments in new advanced foaming technologies which have allowed the generation of foams with micro, sub-micro, and even nanocellular structures, has extended the applications of more traditional foams in terms of weight reduction, damping, and thermal and/or acoustic insulation to novel possibilities, such as electromagnetic interference (EMI) shielding. This Special Issue, which consists of a total of 22 articles, including one review article written by research groups of experts in the field, considers recent research on novel polymer-based foams in all their aspects: design, composition, processing and fabrication, microstructure, characterization and analysis, applications and service behavior, recycling and reuse, etc.

Keywords

grey relational analysis --- multi-objective particle swarm optimization --- acoustic performances --- Ethylene Propylene Diene Monomer --- polyurethane foam composites --- DOPO --- itaconic acid --- ethyl cellulose --- phenolic foams --- composites --- adjacent façade --- PUR --- energy conservation --- heat transfer --- burning characteristic --- semi-rigid polyurethane foams --- aluminum microfibers --- quasi-static compression tests --- mechanical properties --- energy absorption capability --- foams --- polyamide --- crystalline --- thermal conductivity --- mechanical property --- functional --- biomaterials --- composites --- EMI --- cellulose foam --- polypropylene --- foaming quality --- impact property --- intrinsic toughness --- flame-retardant ABS microcellular foams --- phosphorus flame retardants --- MuCell® injection-molding foaming --- graphene oxide --- rigid polyurethane foam --- thermogravimetric analysis --- activation energies --- extrusion foaming --- super critical CO2 --- lignin --- sound absorption coefficient --- mechanical property --- Pluronic --- surfactants --- foams --- SANS --- multilayers --- epoxy composite foam adhesive --- core–shell rubber --- impact wedge–peel test --- automobile structural adhesives --- flame retardancy --- foams --- phosphorus --- ternary synergistic effect --- polypropylene --- fluoelastomer --- scCO2 foaming --- heterogeneous nucleation --- polypropylene --- cellulose nanofiber --- foam injection molding --- mechanical properties --- polystyrene foams --- 1,3,5-benzene-trisamides --- cell nucleation --- foam extrusion --- foam morphology --- supramolecular additives --- thermal insulation --- compression properties --- piezoelectric --- functional foam --- piezocomposite --- PZT --- expandable microspheres --- permittivity --- polyetherimide foams --- graphene --- multifunctional foams --- ultrasonication --- scCO2 --- electrical conductivity --- polymer waste --- polyurethane foam --- leaching test --- microstructure --- absorbent PMI foam --- metallic tube --- electromagnetic wave absorption --- mechanical properties --- failure mechanism --- polymers --- foams --- shock compression --- equation of state --- epoxy --- foams --- expandable microspheres --- graphene --- nanotubes --- conductivity --- syntactic foams --- n/a

Biomass Processing for Biofuels, Bioenergy and Chemicals

Authors: --- ---
ISBN: 9783039289097 / 9783039289103 Year: Pages: 428 DOI: 10.3390/books978-3-03928-910-3 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Biomass can be used to produce renewable electricity, thermal energy, transportation fuels (biofuels), and high-value functional chemicals. As an energy source, biomass can be used either directly via combustion to produce heat or indirectly after it is converted to one of many forms of bioenergy and biofuel via thermochemical or biochemical pathways. The conversion of biomass can be achieved using various advanced methods, which are broadly classified into thermochemical conversion, biochemical conversion, electrochemical conversion, and so on. Advanced development technologies and processes are able to convert biomass into alternative energy sources in solid (e.g., charcoal, biochar, and RDF), liquid (biodiesel, algae biofuel, bioethanol, and pyrolysis and liquefaction bio-oils), and gaseous (e.g., biogas, syngas, and biohydrogen) forms. Because of the merits of biomass energy for environmental sustainability, biofuel and bioenergy technologies play a crucial role in renewable energy development and the replacement of chemicals by highly functional biomass. This book provides a comprehensive overview and in-depth technical research addressing recent progress in biomass conversion processes. It also covers studies on advanced techniques and methods for bioenergy and biofuel production.

Keywords

lignocellulose --- pretreatment --- hardwood --- extrusion --- enzymatic digestibility --- bioethanol --- renewable energy --- biofuel --- environment --- technology development --- co-combustion --- sewage sludge --- thermogravimetric analysis --- Fourier transform infrared spectroscopy --- synergistic effect --- single-pellet combustion --- biodiesel --- fatty acid methyl ester --- free fatty acids --- oxidation stability --- antioxidant --- hydrogen --- coffee mucilage --- organic wastes --- dark fermentation --- anaerobic digestion --- biodiesel --- bio-jet fuel --- triacylglycerides --- Fatty Acid Methyl Ester --- lipids --- hydrodeoxygenation --- drop-in fuel --- rubber seed oil --- biodiesel production --- nanomagnetic catalyst --- subcritical methanol --- FAME yield --- Box-Behnken design --- GCI --- biodiesel --- diesel --- combustion --- emission --- renewable energy --- microwave --- free fatty acid --- crude oil --- renewable energy --- biomass --- waste --- black soldier fly larvae (BSFL) --- instar --- lipid --- fatty acid methyl ester (FAME) --- fermentation --- Rancimat method --- butylated hydroxyanisole --- tert-butylhydroquinone --- fatty acid methyl esters --- viscosity --- response surface --- anaerobic treatment --- biogas --- kinetic study --- potato peels --- cow manure --- thermophilic --- mesophilic --- palm oil mill effluent --- acclimatization --- direct carbon fuel cell --- biochar --- pyrolysis --- power density --- pre-treatment --- post-treatment --- combustion characteristics --- injection strategies --- compression ratio --- intake temperature --- torrefaction --- vacuum --- biomass pretreatment --- bioenergy --- energy yield --- biochar --- rice straw --- rice husk --- power generation --- gasification --- alternative fuel --- Rhus typhina biodiesel --- non-edible oil --- base-catalyzed transesterification --- Physico-chemical properties --- concentration polarization --- draw solution --- feed solution --- forward osmosis --- pressure-retarded osmosis --- operating conditions --- membrane fouling --- osmotic membrane --- bioenergy --- biofuel --- nanotechnology --- nano-catalysts --- nano-additives --- crude glycerol --- glycerol carbonate --- dimethyl carbonate --- microwave irradiation --- reaction kinetics

Biofuel and Bioenergy Technology

Authors: --- ---
ISBN: 9783038975960 Year: Pages: 425 DOI: 10.3390/books978-3-03897-597-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-03-21 14:08:22
License:

Loading...
Export citation

Choose an application

Abstract

The subject of this book is ""Biofuel and Bioenergy Technology"". It aims to publish high-quality review and research papers, addressing recent advances in biofuel and bioenergy. State-of-the-art studies of advanced techniques of biorefinery for biofuel production are also included. Research involving experimental studies, recent developments, and novel and emerging technologies in this field are covered. This book contains twenty-seven technical papers which cover diversified biofuel and bioenergy technology-related research that have shown critical results and contributed significant findings to the fields of biomass processing, pyrolysis, bio-oil and its emulsification; transesterification and biodiesel, gasification and syngas, fermentation and biogas/methane, bioethanol and alcohol-based fuels, solid fuel and biochar, and microbial fuel cell and power generation development. The published contents relate to the most important techniques and analyses applied in the biofuel and bioenergy technology.

Keywords

air-steam gasification --- equilibrium model --- tar --- energy exchange --- exergy efficiency --- bio-electro-Fenton microbial fuel cells (Bio-E-Fenton MFCs) --- wastewater --- photo catalyst --- degradation --- calcination --- chemical oxygen demand (COD) --- MFC --- hydrodynamic boundary layer --- recirculation mode --- shear rate --- voltage --- charge transfer resistance --- biodiesel --- direct transesterification --- Rhodotorula glutinis --- single cell oil --- biogas --- tri-reforming process --- syngas --- methane and carbon dioxide conversion --- hydrogen/carbon monoxide ratio --- first-law/second-law efficiency --- biodiesel --- esterification --- liquid lipase --- superabsorbent polymer --- response surface methodology --- waste wood --- torrefaction --- energy yield --- mass yield --- CHO index --- gross calorific value --- Van Krevelen diagram --- anaerobic digestion --- biogas production --- wastewater treatment --- membrane bioreactors --- anaerobic digestion --- methane --- carbon dioxide --- small-scale biogas plants --- developing countries --- SOFC --- validation --- simulation --- exergy --- syngas --- Chlorella --- coal-fired flue-gas --- screening --- biodiesel property --- mixotrophic cultivation --- thermophilic anaerobic digestion --- corn stover --- prairie cord grass --- unbleached paper --- digester performance --- process stability --- synergistic effects --- microbial community --- Methanothermobacter --- biochemical methane potential --- redox potential reduction --- direct interspecies electron transfer --- electroactive biofilm --- Nejayote --- granular activated carbon --- Jerusalem artichoke --- lignocellulose --- acid pretreatment --- nitric acid --- alkali pretreatment --- enzymatic hydrolysis --- ethanol fermentation --- waste biomass --- Vietnam --- solid biofuel --- calorific value --- mechanical durability --- fatty acid methyl ester --- catalyst --- viscosity --- iodine value --- acidity index --- sewage sludge --- pyrolytic oil --- Taguchi method --- thermogravimetric analysis --- synergistic effect --- combined pretreatment --- ball mill --- ethanol organosolv --- herbaceous biomass --- lignin recovery --- Annona muricata --- biodiesel production --- seed oil --- soursop --- two-step process --- response surface methodology --- RSM --- second-generation biodiesel --- stone fruit --- optimisation --- biodiesel testing --- transesterification --- lignocellulosic biomass --- Miscanthus --- mechanical pretreatment --- organosolv pretreatment --- microbial biofuel --- metabolic engineering --- alkanes --- alcohols --- acetone --- electrochemical hydrogenation --- isopropanol --- membrane contamination --- polymer electrolyte membrane --- relative humidity --- diesel --- Carica papaya --- engine performance --- biodiesel --- characterisation --- porosity --- thermophoretic force --- biomass fuel --- non-premixed combustion --- counter-flow structure --- mathematical modeling --- emulsification --- liquefaction --- bio-oils --- co-surfactant --- surfactant --- diesel --- biogas --- Clostridiales --- hydrogen-producing bacteria --- bioreactors --- anaerobic fermentation --- anaerobic digestion --- microbial community composition

Listing 1 - 8 of 8
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (8)


License

CC by-nc-nd (8)


Language

english (6)

eng (2)


Year
From To Submit

2020 (3)

2019 (5)