Search results: Found 8

Listing 1 - 8 of 8
Sort by
Computergestützte Verfahren zur pragmatischen Beurteilung der Tragwiderstände von Brettschichtholz: Zusammenfassung exemplarischer Simulationsstudien

Author:
Book Series: Karlsruher Berichte zum Ingenieurholzbau / Karlsruher Institut für Technologie, Holzbau und Baukonstruktionen ISSN: 1860093X ISBN: 9783731504931 Year: Volume: 31 Pages: 174 p. DOI: 10.5445/KSP/1000052710 Language: GERMAN
Publisher: KIT Scientific Publishing
Subject: General and Civil Engineering
Added to DOAB on : 2019-07-30 20:02:00
License:

Loading...
Export citation

Choose an application

Abstract

This book contains experiences and results of computer simulations in the field of research on glued laminated timber. Literature and references to the corresponding methodical approach are given to facilitate the access to the elementary basics. It also contains constructive explanations and critical annotations on modelling glued laminated timber for bending, tension and compression tests. Finally, the relevance of the simulation results for practical issues is discussed.

Nanocelluloses: Synthesis, Modification and Applications

Author:
ISBN: 9783039287840 / 9783039287857 Year: Pages: 142 DOI: 10.3390/books978-3-03928-785-7 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- Biotechnology
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Nanocelluloses: Synthesis, Modification and Applications is a book that provides some recent enhancements of various types of nanocellulose, mainly bacterial nanocellulose, cellulose nanocrystals and nanofibrils, and their nanocomposites. Bioactive bacterial nanocellulose finds applications in biomedical applications, https://doi.org/10.3390/nano9101352. Grafting and cross-linking bacterial nanocellulose modification emerges as a good choice for improving the potential of bacterial nanocellulose in such biomedical applications as topical wound dressings and tissue-engineering scaffolds, https://doi.org/10.3390/nano9121668. On the other hand, bacterial nanocellulose can be used as paper additive for fluorescent paper, https://doi.org/10.3390/nano9091322, and for the reinforcement of paper made from recycled fibers, https://doi.org/10.3390/nano9010058. Nanocellulose membranes are used for up-to-date carbon capture applications, https://doi.org/10.3390/nano9060877. Nanocellulose has been applied as a novel component of membranes designed to address a large spectrum of filtration problems, https://doi.org/10.3390/nano9060867. Poly(vinyl alcohol) (PVA) and cellulose nanocrystals (CNC) in random composite mats prepared using the electrospinning method are widely characterized in a large range of physical chemical aspects, https://doi.org/10.3390/nano9050805. Similarly, physical chemical aspects are emphasized for carboxylated cellulose nanofibrils produced by ammonium persulfate oxidation combined with ultrasonic and mechanical treatment, https://doi.org/10.3390/nano8090640. It is extraordinary how nanocellulose can find application in such different fields. Along the same lines, the contributions in this book come from numerous different countries, confirming the great interest of the scientific community for nanocellulose.

Textile Reinforced Cement Composites: New Insights in Structural and Material Engineering

Authors: ---
ISBN: 9783039283309 9783039283316 Year: Pages: 284 DOI: 10.3390/books978-3-03928-331-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-04-07 23:07:08
License:

Loading...
Export citation

Choose an application

Abstract

This Special Issue presents the latest advances in the field of Textile-Reinforced Cement Composites, including Textile-Reinforced Concrete (TRC), Textile-Reinforced Mortar (TRM), Fabric-Reinforced Cementitious Matrix (FRCM), etc. These composite materials distinguish themselves from other fibre-reinforced concrete materials by their strain-hardening behaviour under tensile loading. This Special Issue is composed of 14 papers covering new insights in structural and material engineering. The papers include investigations on the level of the fibre reinforcement system as well as on the level of the composites, investigating their impact and fatigue behaviour, durability and fire behaviour. Both the strengthening of existing structures and the development of new structural systems such as lightweight sandwich systems are presented, and analysis and design methods are discussed. This Special Issue demonstrates the broadness and intensity of the ongoing advancements in the field of Textile-Reinforced Cement composites and the importance of several future research directions.

Keywords

textile reinforced concrete --- cathodic corrosion protection --- durability --- bending tests --- fire --- high temperature --- textile coating --- textile reinforced cementitious composites (TRC) --- finite element model --- real scale bending experiments --- shear --- structural insulating sandwich panel --- textile reinforced cementitious composites (TRC), sandwich elements --- fatigue --- uniaxial tensile tests --- four-point bending tests --- digital image correlation (DIC) --- textile reinforced concrete (TRC) --- strengthening --- bending --- model --- design --- practical application --- shear --- textile-reinforced concrete --- carbon concrete composite --- design provisions --- size effect --- shear span --- textile reinforced concrete --- TRC --- fabric reinforced cementitious mortar --- FRCM --- glass fabric --- high performance concrete --- retrofitting --- ACK model --- stochastic cracking model --- alkaline environment --- carbon-reinforced concrete --- creep --- durability --- moisture --- tensile strength --- textile reinforced concrete --- textile reinforced concrete --- carbon reinforced concrete --- TRC --- CRC --- bond --- fatigue --- carbon textile --- epoxy impregnation --- test setup --- textile reinforced mortar --- bond --- masonry --- normal weight/lightweight aggregates --- elevated temperatures --- fiber-reinforced concrete --- crack spacing --- fiber --- micro-fiber --- tensile strength --- toughness --- textile-reinforced concrete --- thin-walled shells --- cementitious composites --- layered finite elements --- mixture rules --- model calibration --- reactive powder concrete (RPC) --- textile reinforced concrete (TRC) --- foam concrete (FC) --- sandwich elements --- wind loading --- finite element analysis (FEA) --- strain-hardening cement-based composites --- textile reinforcement --- short-fiber reinforcement --- hybrid reinforcement --- tension --- impact loading --- single-yarn pullout --- cement composites --- fibre --- textile --- textile-reinforced concrete --- textile-reinforced mortar

Advances in Digital Image Correlation (DIC)

Authors: ---
ISBN: 9783039285143 / 9783039285150 Year: Pages: 252 DOI: 10.3390/books978-3-03928-515-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Digital image correlation (DIC) has become the most popular full field measurement technique in experimental mechanics. It is a versatile and inexpensive measurement method that provides a large amount of experimental data. Because DIC takes advantage of a huge variety of image modalities, the technique allows covering a wide range of space and time scales. Stereo extends the scope of DIC to non-planar cases, which are more representative of industrial use cases. With the development of tomography, digital volume correlation now provides access to volumetric data, enabling the study of the inner behavior of materials and structures.However, the use of DIC data to quantitatively validate models or accurately identify a set of constitutive parameters remains challenging. One of the reasons lies in the compromises between measurement resolution and spatial resolution. Second, the question of the boundary conditions is still open. Another reason is that the measured displacements are not directly comparable with usual simulations. Finally, the use of full field data leads to new computational challenges.

Keywords

super pressure balloon --- stress concentration --- strain --- non-contact measurement --- digital image correlation --- large deformation --- digital image correlation --- multi-perspective --- single camera --- cross dichroic prism --- earthquake rupture --- fault geometry --- spatiotemporal evolution --- strain gage --- spatial sampling rate --- rupture speed --- slip velocity --- high-speed camera --- experimental-numerical method --- digital image correlation --- finite element method --- static analysis --- arch structures --- fracture process zone --- digital image correlation technique --- acoustic emission technique --- stress intensity factor --- 3D deformation --- digital volume correlation --- optical coherence elastography --- virtual fields method --- layered material --- interior 3D deformation --- digital volumetric speckle photography --- X-ray microtomography --- digital volume correlation --- red sandstone --- woven composite beam --- digital image correlation --- dynamic interfacial rupture --- traction continuity across interfaces --- non-contact video gauge --- measurement --- stress-strain relationship --- uniaxial tensile test --- elevated temperature --- DIC --- initial condition --- image registration --- strain measurement --- copper plate --- underwater impulsive loading --- non-liner dynamic deformation --- 3D digital image correlation --- image correlation --- gradient correlation functions --- laser speckles --- image cross-correlation --- monitoring --- geosciences --- automated systems --- machine learning --- image classification --- image shadowing --- characterization of composite materials --- interlaminar tensile strength --- digital image correlation --- inverse method --- finite element model updating --- Digital image correlation (DIC) --- composite structures --- structural testing --- experimental mechanics --- composite materials --- automated composite manufacturing --- composite inspection --- automated fiber placement (AFP) --- DIC --- traceable calibration --- accuracy --- error --- n/a

Laser Welding

Authors: ---
ISBN: 9783039288618 / 9783039288625 Year: Pages: 260 DOI: 10.3390/books978-3-03928-862-5 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Laser welding is a high-energy process used in a wide range of advanced materials to obtain micro- to macro-sized joints in both similar and dissimilar combinations. Moreover, this technique is widely used in several industries, such as automotive, aerospace, and medical industries, as well as in electrical devices. Although laser welding has been used for several decades, significant and exciting innovations often arise from both the process and/or advanced materials side.

Keywords

laser beam welding --- buy-to-fly --- L-joint --- T-joint --- Ti–6Al–4V --- dissimilar joining --- laser welding-brazing --- finite element method --- titanium --- aluminium --- laser welds --- mechanical properties --- low alloyed steel --- dual phase steel --- trip steel --- laser beam welding --- conduction regime --- Ti-5Al-5V-5Mo-3Cr --- laser offset welding --- hybrid welding --- microstructure --- intermetallic layer --- pulsed Nd:YAG laser beam welding --- DP1000 steel --- penetration --- hardness --- phase transformation --- dissimilar welding --- fiber laser --- finite element analysis --- laser welding --- spatter --- liquid metal --- high-speed imaging --- porosity control --- laser stake welding --- aluminum alloy T-joint --- aided electric current --- weld morphology --- mechanical properties --- Al/steel joints --- laser keyhole welding --- IMC layers --- tensile properties --- EBSD phase mapping --- high temperature titanium alloy --- laser welding --- microstructure --- mechanical properties --- BTi-6431S --- fiber laser welding --- dissimilar material --- stainless steel --- microstructure --- hardness --- tensile strength --- steel S700MC --- hybrid welding --- HLAW --- laser beam --- MAG --- magnesium alloy thin sheet --- fiber laser welding --- microstructure --- mechanical properties --- H-shaped fusion zone --- laser welding --- keyhole --- weld pool behavior --- mass transfer --- dissimilar metal --- LKW --- WW --- prediction --- accuracy --- SKM --- WPP --- n/a

Wood Properties and Processing

Author:
ISBN: 9783039288212 / 9783039288229 Year: Pages: 350 DOI: 10.3390/books978-3-03928-822-9 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Physics (General)
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Wood-based materials are CO2-neutral, renewable, and considered to be environmentally friendly. The huge variety of wood species and wood-based composites allows a wide scope of creative and esthetic alternatives to materials with higher environmental impacts during production, use and disposal. Quality of wood is influenced by the genetic and environmental factors. One of the emerging uses of wood are building and construction applications. Modern building and construction practices would not be possible without use of wood or wood-based composites. The use of composites enables using wood of lower quality for the production of materials with engineered properties for specific target applications. Even more, the utilization of such reinforcing particles as carbon nanotubes and nanocellulose enables development of a new generation of composites with even better properties. The positive aspect of decomposability of waste wood can turn into the opposite when wood or wood-based materials are exposed to weathering, moisture oscillations, different discolorations, and degrading organisms. Protective measures are therefore unavoidable for many outdoor applications. Resistance of wood against different aging factors is always a combined effect of toxic or inhibiting ingredients on the one hand, and of structural, anatomical, or chemical ways of excluding moisture on the other.

Keywords

artificial weathering --- blue staining fungi --- colour change --- natural weathering --- wood --- marketing --- material preference --- urban housing --- immigrants --- building culture background --- building material --- chemical changes --- colour changes --- infrared spectroscopy --- hardwoods --- roughness --- Douglas-fir --- lumber --- non-destructive testing --- modulus of elasticity (MOE) --- stiffness --- thinning --- silviculture --- wood based composites --- hybrid beams --- bending stiffness --- flexural rigidity --- aluminium reinforcements --- wooden windows --- end-product-based fiber attribute determinates --- longitudinal stress wave velocity --- mixed-effects hierarchical linear models --- predictive performance --- bamboo grid packing --- cooling packing --- cooling tower --- mechanical properties --- fungi --- bamboo --- heat treatment --- wood --- structural changes --- nondestructive testing --- ultrasound --- Euler-Bernoulli --- modulus of elasticity --- neural network --- high frequency drying --- moisture content --- wood --- brittleness --- density --- dynamic strength --- High-Energy Multiple Impact (HEMI)–test --- Resistance to Impact Milling (RIM) --- bamboo grid packing --- cooling packing --- cooling tower --- chemical composition --- elemental composition --- FTIR --- color --- tropical woods --- brown rot --- Coniophora puteana --- colour --- CIEL*a*b* system --- technological and product innovations --- cyclic loading --- laminated wood --- deflection at the limit of proportionality --- deflection at the modulus of rupture --- wood-processing industry performance --- orthotropic --- elastic constants --- green larch --- compression --- three-point bending --- coefficient of wood bendability --- laminated wood --- technological and product innovations --- minimal curve radius --- orthotropic --- tensile modulus --- tensile strength --- moisture content --- relative humidity --- glued lamella --- flexible chair --- weight of a user --- ultimate state --- volume yield --- European hardwoods --- low quality round wood --- strength grading --- glulam --- ultrasonic wave velocity measurement --- nondestructive assessment --- wood mechanical properties --- intra-ring variation --- dynamic modulus of elasticity --- Pinus massoniana Lamb. --- phenol formaldehyde resin --- wood impregnation --- wood properties --- cell-wall mechanics --- ultrasonic speed --- poplar seedlings --- acoustic resonance --- density --- microfibril angle --- root-collar diameter --- machinability --- Eucalyptus --- plantation timber --- fiber-managed hardwoods

Additive Manufacturing: Alloy Design and Process Innovations

Authors: ---
ISBN: 9783039283521 / 9783039283538 Year: Pages: 372 DOI: 10.3390/books978-3-03928-353-8 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Additive manufacturing (AM) is one of the manufacturing processes that warrants the attention of industrialists, researchers and scientists, because of its ability to produce materials with a complex shape without theoretical restrictions and with added functionalities. There are several advantages to employing additive manufacturing as the primary additive manufacturing process. However, there exist several challenges that need to be addressed systematically. A couple such issues are alloy design and process development. Traditionally alloys designed for conventional cast/powder metallurgical processes were fabricated using advanced AM processes. This is the wrong approach considering that the alloys should be coined based on the process characteristics and meta-stable nature of the process. Hence, we must focus on alloy design and development for AM that suits the AM processes. The AM processes, however, improve almost every day, either in terms of processing capabilities or processing conditions. Hence, the processing part warrants a section that is devoted to these advancements and innovations. Accordingly, the present Special Issue (book) focuses on two aspects of alloy development and process innovations. Here, 45 articles are presented covering different AM processes including selective laser melting, electron beam melting, laser cladding, direct metal laser sintering, ultrasonic consolidation, wire arc additive manufacturing, and hybrid manufacturing. I believe that this Special Issue bears is vital to the field of AM and will be a valuable addition.

Keywords

concrete --- slag --- valorization --- cement --- circular economy --- wire feeding additive manufacturing --- wire lateral feeding --- macro defects --- side spatters --- selective laser melting --- numerical analysis --- thermal behaviour --- AlSi10Mg alloy --- design --- disc brake --- 3D metal printing --- direct metal laser sintering --- thermal stress analysis --- radial grooves --- nickel alloys --- Hastelloy X alloy --- additive manufacturing --- microstructure --- scanning electron microscopy (SEM) --- laser powder bed fusion (LPBF) --- selective laser melting --- titanium alloy --- heat treatment --- microstructure --- microhardness measurement --- arc additive manufacturing --- Al–5Si alloy --- pulse frequency --- arc current --- microstructure --- porosity --- 2219 aluminum alloy --- constitutive model --- microstructural evolution --- continuous dynamic recrystallization --- hot deformation --- selective laser melting --- amorphous alloy --- finite element analysis --- residual stress --- 2219 aluminum alloy --- intermediate thermo-mechanical treatment --- storage energy --- CuAl2 phase --- grain refinement --- selective laser melting --- GH4169 --- temperature and stress fields --- simulation --- model --- selective laser melting --- divisional scanning --- residual stress --- deformation --- thermal conductivity --- tensile strength --- inoculation --- gray cast iron --- additive manufacturing --- selective laser melting --- AlSi10Mg --- Al6061 --- SLM process parameters --- performance characteristics --- AlSi10Mg --- multi-laser manufacturing --- selective laser melting --- microstructure --- mechanical property --- additive manufacturing --- metal powders --- powder flowability --- powder properties --- aluminum --- water absorption --- laser cladding deposition --- 12CrNi2 alloy steel powder --- substrate preheating --- microstructure and properties --- residual stress --- ultrafast laser --- femtosecond --- ablation --- scanning --- additive surface structuring --- hydrophobicity --- parts design --- additive manufacturing --- fused filament fabrication --- fatigue --- Taguchi --- ABS --- additive manufacturing --- selective laser melting --- AlSi10Mg --- Al6061 --- SLM process parameters --- quality of the as-built parts --- aluminum alloys --- selective laser melting (SLM) --- mechanical properties --- selective laser melting --- H13 tool steel --- process parameters --- scanning strategy --- support strategy --- porosity reduction --- selective laser melting --- Ti6Al4V alloy --- martensitic transformation --- texture evolution --- mechanical properties --- M300 mold steel --- elastic abrasive --- PSO-BP neural network algorithm --- parameter optimization --- WxNbMoTa --- refractory high-entropy alloy --- laser cladding deposition --- rapid solidification --- bulk metallic glasses --- selective laser melting --- Cu50Zr43Al7 --- mechanical properties --- Ti-6Al-4V --- wear --- additive manufacturing --- properties --- in-process temperature in MPBAM --- analytical modeling --- high computational efficiency --- molten pool evolution --- laser power absorption --- latent heat --- scanning strategy --- powder packing --- graphene nano-sheets (GNSs) --- epoxy solder --- intermetallic compound (IMC) --- laser powder bed fusion --- additive manufacturing --- aluminum --- composition --- mechanical properties --- localized inductive heating --- hot stamping steel blanks --- tailored properties --- magnetizer --- selective laser melting --- AlSi10Mg alloy --- dynamic properties --- impact --- crystallographic texture --- Additive manufacturing --- selective laser melting --- volumetric heat source --- thermal capillary effects --- melt pool size --- selective laser melting --- Inconel 718 --- crystallographic texture --- subgranular dendrites --- epitaxial growth --- 3D printing --- continuous carbon fiber --- thermosetting epoxy resin --- mechanical properties --- Powder bed --- fatigue --- Hot Isostatic Pressure --- Electron Beam Melting --- stability lobe diagram --- milling --- process-damping --- dynamic characteristics --- thin-walled weak rigidity parts --- Al–Si --- selective laser melting (SLM) --- microstructure --- mechanical properties --- selective laser melting --- microstructure --- defects --- Inconel 718 --- laser energy density --- selective laser melting --- molten pool dynamic behavior --- equivalent processing model --- workpiece scale --- nickel-based superalloy --- numerical simulation --- metallic glasses --- composite materials --- interfaces --- additive manufacturing --- ultrasonic bonding --- 3D printing --- Al–Mg–Si alloy --- quenching rate --- microstructures --- mechanical properties --- paint bake-hardening --- precipitates --- additive manufacturing --- powder bed fusion --- selective laser melting --- regular mixing --- ball milling --- flowability --- Ti-6Al-4V --- microstructure --- element segregation --- laves phase --- vanadium --- laser cladding --- arc additive manufacture --- Al–Mg alloy --- Mg content --- microstructure --- mechanical properties --- n/a

Additive Manufacturing: Alloy Design and Process Innovations

Authors: ---
ISBN: 9783039284146 / 9783039284153 Year: Pages: 352 DOI: 10.3390/books978-3-03928-415-3 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Additive manufacturing (AM) is one of the manufacturing processes that warrants the attention of industrialists, researchers and scientists, because of its ability to produce materials with a complex shape without theoretical restrictions and with added functionalities. There are several advantages to employing additive manufacturing as the primary additive manufacturing process. However, there exist several challenges that need to be addressed systematically. A couple such issues are alloy design and process development. Traditionally alloys designed for conventional cast/powder metallurgical processes were fabricated using advanced AM processes. This is the wrong approach considering that the alloys should be coined based on the process characteristics and meta-stable nature of the process. Hence, we must focus on alloy design and development for AM that suits the AM processes. The AM processes, however, improve almost every day, either in terms of processing capabilities or processing conditions. Hence, the processing part warrants a section that is devoted to these advancements and innovations. Accordingly, the present Special Issue (book) focuses on two aspects of alloy development and process innovations. Here, 45 articles are presented covering different AM processes including selective laser melting, electron beam melting, laser cladding, direct metal laser sintering, ultrasonic consolidation, wire arc additive manufacturing, and hybrid manufacturing. I believe that this Special Issue bears is vital to the field of AM and will be a valuable addition.

Keywords

concrete --- slag --- valorization --- cement --- circular economy --- wire feeding additive manufacturing --- wire lateral feeding --- macro defects --- side spatters --- selective laser melting --- numerical analysis --- thermal behaviour --- AlSi10Mg alloy --- design --- disc brake --- 3D metal printing --- direct metal laser sintering --- thermal stress analysis --- radial grooves --- nickel alloys --- Hastelloy X alloy --- additive manufacturing --- microstructure --- scanning electron microscopy (SEM) --- laser powder bed fusion (LPBF) --- selective laser melting --- titanium alloy --- heat treatment --- microstructure --- microhardness measurement --- arc additive manufacturing --- Al–5Si alloy --- pulse frequency --- arc current --- microstructure --- porosity --- 2219 aluminum alloy --- constitutive model --- microstructural evolution --- continuous dynamic recrystallization --- hot deformation --- selective laser melting --- amorphous alloy --- finite element analysis --- residual stress --- 2219 aluminum alloy --- intermediate thermo-mechanical treatment --- storage energy --- CuAl2 phase --- grain refinement --- selective laser melting --- GH4169 --- temperature and stress fields --- simulation --- model --- selective laser melting --- divisional scanning --- residual stress --- deformation --- thermal conductivity --- tensile strength --- inoculation --- gray cast iron --- additive manufacturing --- selective laser melting --- AlSi10Mg --- Al6061 --- SLM process parameters --- performance characteristics --- AlSi10Mg --- multi-laser manufacturing --- selective laser melting --- microstructure --- mechanical property --- additive manufacturing --- metal powders --- powder flowability --- powder properties --- aluminum --- water absorption --- laser cladding deposition --- 12CrNi2 alloy steel powder --- substrate preheating --- microstructure and properties --- residual stress --- ultrafast laser --- femtosecond --- ablation --- scanning --- additive surface structuring --- hydrophobicity --- parts design --- additive manufacturing --- fused filament fabrication --- fatigue --- Taguchi --- ABS --- additive manufacturing --- selective laser melting --- AlSi10Mg --- Al6061 --- SLM process parameters --- quality of the as-built parts --- aluminum alloys --- selective laser melting (SLM) --- mechanical properties --- selective laser melting --- H13 tool steel --- process parameters --- scanning strategy --- support strategy --- porosity reduction --- selective laser melting --- Ti6Al4V alloy --- martensitic transformation --- texture evolution --- mechanical properties --- M300 mold steel --- elastic abrasive --- PSO-BP neural network algorithm --- parameter optimization --- WxNbMoTa --- refractory high-entropy alloy --- laser cladding deposition --- rapid solidification --- bulk metallic glasses --- selective laser melting --- Cu50Zr43Al7 --- mechanical properties --- Ti-6Al-4V --- wear --- additive manufacturing --- properties --- in-process temperature in MPBAM --- analytical modeling --- high computational efficiency --- molten pool evolution --- laser power absorption --- latent heat --- scanning strategy --- powder packing --- graphene nano-sheets (GNSs) --- epoxy solder --- intermetallic compound (IMC) --- laser powder bed fusion --- additive manufacturing --- aluminum --- composition --- mechanical properties --- localized inductive heating --- hot stamping steel blanks --- tailored properties --- magnetizer --- selective laser melting --- AlSi10Mg alloy --- dynamic properties --- impact --- crystallographic texture --- Additive manufacturing --- selective laser melting --- volumetric heat source --- thermal capillary effects --- melt pool size --- selective laser melting --- Inconel 718 --- crystallographic texture --- subgranular dendrites --- epitaxial growth --- 3D printing --- continuous carbon fiber --- thermosetting epoxy resin --- mechanical properties --- Powder bed --- fatigue --- Hot Isostatic Pressure --- Electron Beam Melting --- stability lobe diagram --- milling --- process-damping --- dynamic characteristics --- thin-walled weak rigidity parts --- Al–Si --- selective laser melting (SLM) --- microstructure --- mechanical properties --- selective laser melting --- microstructure --- defects --- Inconel 718 --- laser energy density --- selective laser melting --- molten pool dynamic behavior --- equivalent processing model --- workpiece scale --- nickel-based superalloy --- numerical simulation --- metallic glasses --- composite materials --- interfaces --- additive manufacturing --- ultrasonic bonding --- 3D printing --- Al–Mg–Si alloy --- quenching rate --- microstructures --- mechanical properties --- paint bake-hardening --- precipitates --- additive manufacturing --- powder bed fusion --- selective laser melting --- regular mixing --- ball milling --- flowability --- Ti-6Al-4V --- microstructure --- element segregation --- laves phase --- vanadium --- laser cladding --- arc additive manufacture --- Al–Mg alloy --- Mg content --- microstructure --- mechanical properties --- n/a

Listing 1 - 8 of 8
Sort by
Narrow your search