Search results: Found 5

Listing 1 - 5 of 5
Sort by
Control of Multiphase Machines and Drives

Authors: ---
ISBN: 9783039281367 9783039281374 Year: Pages: 146 DOI: 10.3390/books978-3-03928-137-4 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-01-30 16:39:46
License:

Loading...
Export citation

Choose an application

Abstract

With the growing interest in electrical machines in recent times, the multiphase machine field has developed into a fascinating research area. Their intrinsic features (power splitting, better fault tolerance, or lower torque ripple) make them an appealing competitor to conventional three-phase machines. Multiphase electric drives have been recently used in applications where fault tolerance and continuous operation of the drive are required. However, the difficulties in extending the three-phase conventional current regulation and control structure to multiphase systems still limit their broad applicability in industry solutions. The main objective of this book is to illustrate new advances, developments, and applications in the field of multiphase machines and drives, while exposing these advances, developments, and applications to the scientific community and industry.

Power Electronics and Power Quality

Author:
ISBN: 9783039283583 / 9783039283590 Year: Pages: 336 DOI: 10.3390/books978-3-03928-359-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Power quality (PQ) is receiving more and more attention from consumers, distribution system operators, transmission system operators, and other entities related to electrical power systems. As PQ problems have direct implications for business productivity, causing high economic losses, the research and development monitoring technologies and power electronics solutions that ensure the PQ of the power systems are matters of utmost importance. This book is a collection of high quality papers published in the “Power Electronics and Power Quality” Special Issue of the journal Energies. It reflects on the latest investigations and the new trends in this field.

Keywords

high speed maglev --- long-stator synchronous motor --- propulsion inverter control system position estimator --- distorted grid conditions --- SGDFT --- Lagrange-interpolation method --- frequency adaption --- SC --- primary neutral integrity --- multi-grounded neutral (MGN) system --- neutral integrity detection --- passive method --- computer simulation --- modeling --- microinverter --- photovoltaic systems --- state-space model --- power inverter --- voltage source inverter --- four-leg inverter --- cost-effectiveness --- current control --- pulse width modulation --- indirect matrix converter (IMC) --- input filter --- input power factor --- matrix converter (MC) --- space vector modulation (SVM) --- power quality --- microgrid (MG) --- renewable power generation --- superconducting magnetic energy storage (SMES) --- energy shaping passivity (ESP)-based control --- power semiconductor device --- temperature --- switching transients --- variation in voltage --- half-bridge inverters --- digital control --- hysteresis current control --- switching frequency --- optimization --- static var compensator --- series active filter --- thyristor-controlled reactor --- phase-leading capacitor --- hybrid static var compensator --- static synchronous compensator --- hybrid active filter --- Pulse Width Modulation (PWM) --- Field Programmable Gate Array (FPGA) --- Total Harmonic Distortion (THD) --- harmonics --- event detection --- power quality --- histogram --- machine learning --- wavelet transform --- continuous particle swarm optimization (CPSO) --- overcurrent relay coordination (OCR) --- time multiplier setting (TMS) --- power system protection --- protection relay --- Simulink --- Matlab --- Omicron CMC 256plus --- power quality --- enerlyzer --- comtrade --- distance protection --- Shunt Active Power Filter --- digital control --- harmonics --- multilevel converter --- power quality --- p-q theory --- robust control --- DC-DC converter --- constant power load --- low voltage direct-current residential microgrid --- Multiterminal HVDC --- CSC --- FBMMC --- MMC --- Hybrid HVDC --- Full-bridge --- power control --- voltage control --- DC short-circuit handling --- hybrid power filter --- power quality --- reactive power

Control and Nonlinear Dynamics on Energy Conversion Systems

Authors: ---
ISBN: 9783039211104 9783039211111 Year: Pages: 438 DOI: 10.3390/books978-3-03921-111-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

The ever-increasing need for higher efficiency, smaller size, and lower cost make the analysis, understanding, and design of energy conversion systems extremely important, interesting, and even imperative. One of the most neglected features in the study of such systems is the effect of the inherent nonlinearities on the stability of the system. Due to these nonlinearities, these devices may exhibit undesirable and complex dynamics, which are the focus of many researchers. Even though a lot of research has taken place in this area during the last 20 years, it is still an active research topic for mainstream power engineers. This research has demonstrated that these systems can become unstable with a direct result in increased losses, extra subharmonics, and even uncontrollability/unobservability. The detailed study of these systems can help in the design of smaller, lighter, and less expensive converters that are particularly important in emerging areas of research like electric vehicles, smart grids, renewable energy sources, and others. The aim of this Special Issue is to cover control and nonlinear aspects of instabilities in different energy conversion systems: theoretical, analysis modelling, and practical solutions for such emerging applications. In this Special Issue, we present novel research works in different areas of the control and nonlinear dynamics of energy conversion systems.

Keywords

data-driven --- prediction --- neural network --- air-handling unit (AHU) --- supply air temperature --- pulverizing system --- soft sensor --- inferential control --- moving horizon estimation --- multi-model predictive control --- micro-grid --- droop control --- virtual impedance --- harmonic suppression --- power quality --- combined heat and power unit --- two-stage bypass --- dynamic model --- coordinated control system --- predictive control --- decoupling control --- power conversion --- model–plant mismatches --- disturbance observer --- performance recovery --- offset-free --- electrical machine --- electromagnetic vibration --- multiphysics --- rotor dynamics --- air gap eccentricity --- calculation method --- magnetic saturation --- corrugated pipe --- whistling noise --- Helmholtz number --- excited modes --- switched reluctance generator --- capacitance current pulse train control --- voltage ripple --- capacitance current --- feedback coefficient --- distributed architecture --- maximum power point tracking --- sliding mode control --- overvoltage --- permanent magnet synchronous motor (PMSM) --- single artificial neuron goal representation heuristic dynamic programming (SAN-GrHDP) --- single artificial neuron (SAN) --- reinforcement learning (RL) --- goal representation heuristic dynamic programming (GrHDP) --- adaptive dynamic programming (ADP) --- sliding mode observer (SMO) --- permanent magnet synchronous motor (PMSM) --- extended back electromotive force (EEMF) --- position sensorless --- bridgeless converter --- discontinuous conduction mode (DCM) --- high step-up voltage gain --- power factor correction (PFC) --- space mechanism --- multi-clearance --- nonlinear dynamic model --- planetary gears --- vibration characteristics --- new step-up converter --- ultrahigh voltage conversion ratio --- small-signal model --- average-current mode control --- slope compensation --- monodromy matrix --- current mode control --- boost-flyback converter --- explosion-magnetic generator --- plasma accelerator --- current-pulse formation --- DC-DC buck converter --- contraction analysis --- global stability --- matrix norm --- DC micro grid --- efficiency optimization --- variable bus voltage MG --- variable switching frequency DC-DC converters --- centralized vs. decentralized control --- local vs. global optimization --- buck converter --- DC motor --- bifurcations in control parameter --- sliding control --- zero average dynamics --- fixed-point inducting control --- DC-DC converters --- quadratic boost --- maximum power point tracking (MPPT) --- nonlinear dynamics --- subharmonic oscillations --- photovoltaic (PV) --- steel catenary riser --- rigid body rotation --- wave --- the load of suspension point in the z direction --- Cable3D

Applications of Power Electronics

Authors: --- ---
ISBN: 9783038979746 9783038979753 Year: Volume: 1 Pages: 476 DOI: 10.3390/books978-3-03897-975-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering --- Technology (General)
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Power electronics technology is still an emerging technology, and it has found its way into many applications, from renewable energy generation (i.e., wind power and solar power) to electrical vehicles (EVs), biomedical devices, and small appliances, such as laptop chargers. In the near future, electrical energy will be provided and handled by power electronics and consumed through power electronics; this not only will intensify the role of power electronics technology in power conversion processes, but also implies that power systems are undergoing a paradigm shift, from centralized distribution to distributed generation. Today, more than 1000 GW of renewable energy generation sources (photovoltaic (PV) and wind) have been installed, all of which are handled by power electronics technology. The main aim of this book is to highlight and address recent breakthroughs in the range of emerging applications in power electronics and in harmonic and electromagnetic interference (EMI) issues at device and system levels as discussed in ?robust and reliable power electronics technologies, including fault prognosis and diagnosis technique stability of grid-connected converters and ?smart control of power electronics in devices, microgrids, and at system levels.

Keywords

energy storage --- lithium-ion battery --- battery management system BMS --- battery modeling --- state of charge SoC --- grid-connected inverter --- power electronics --- multi-objective optimization --- switching frequency --- total demand distortion --- switching losses --- EMI filter --- power converter --- power density --- optimal design --- electrical drives --- axial flux machines --- magnetic equivalent circuit --- torque ripple --- back EMF --- permanent-magnet machines --- five-phase permanent magnet synchronous machine --- five-leg voltage source inverter --- multiphase space vector modulation --- sliding mode control --- extended Kalman filter --- voltage source inverters (VSI) --- voltage control --- current control --- digital control --- predictive controllers --- advanced controllers --- stability --- response time --- lithium-ion batteries --- electric vehicles --- battery management system --- electric power --- dynamic PV model --- grid-connected VSI --- HF-link MPPT converter --- nanocrystalline core --- SiC PV Supply --- DC–DC converters --- multi-level control --- renewable energy resources control --- electrical engineering communications --- microgrid control --- distributed control --- power system operation and control --- variable speed pumped storage system --- droop control --- vector control --- phasor model technique --- nine switch converter --- synchronous generator --- digital signal controller --- static compensator, distribution generation --- hybrid converter --- multi-level converter (MLC) --- series active filter --- power factor correction (PFC) --- field-programmable gate array --- particle swarm optimization --- selective harmonic elimination method --- voltage source converter --- plug-in hybrid electric vehicles --- power management system --- renewable energy sources --- fuzzy --- smart micro-grid --- five-phase machine --- fault-tolerant control --- induction motor --- one phase open circuit fault (1-Ph) --- adjacent two-phase open circuit fault (A2-Ph) --- volt-per-hertz control (scalar control) --- current-fed inverter --- LCL-S topology --- semi-active bridge --- soft switching --- voltage boost --- wireless power transfer --- DC–DC conversion --- zero-voltage switching (ZVS) --- transient control --- DC–DC conversion --- bidirectional converter --- power factor correction --- line frequency instability --- one cycle control --- non-linear phenomena --- bifurcation --- boost converter --- converter --- ice melting --- modular multilevel converter (MMC) --- optimization design --- transmission line --- static var generator (SVG) --- hardware-in-the-loop --- floating-point --- fixed-point --- real-time emulation --- field programmable gate array --- slim DC-link drive --- VPI active damping control --- total harmonic distortion --- cogging torque --- real-time simulation --- power converters --- nonlinear control --- embedded systems --- high level programing --- SHIL --- DHIL --- 4T analog MOS control --- high frequency switching power supply --- water purification --- modulation index --- electromagnetic interference --- chaotic PWM --- DC-DC buck converter --- CMOS chaotic circuit --- triangular ramp generator --- spread-spectrum technique --- system in package --- electric vehicle --- wireless power transfer --- inductive coupling --- coupling factor --- phase-shift control --- series-series compensation --- PSpice --- fixed-frequency double integral sliding-mode (FFDISM) --- class-D amplifier --- Q-factor --- GaN cascode --- direct torque control (DTC) --- composite active vectors modulation (CVM) --- permanent magnet synchronous motor (PMSM) --- effect factors --- double layer capacitor (DLC) models --- energy storage modelling --- simulation models --- current control loops --- dual three-phase (DTP) permanent magnet synchronous motors (PMSMs) --- space vector pulse width modulation (SVPWM) --- vector control --- voltage source inverter --- active rectifiers --- single-switch --- analog phase control --- digital phase control --- wireless power transfer --- three-level boost converter (TLBC) --- DC-link cascade H-bridge (DCLCHB) inverter --- conducting angle determination (CAD) techniques --- total harmonic distortion (THD) --- three-phase bridgeless rectifier --- fault diagnosis --- fault tolerant control --- hardware in loop --- compensation topology --- electromagnetic field (EMF) --- electromagnetic field interference (EMI) --- misalignment --- resonator structure --- wireless power transfer (WPT) --- WPT standards --- EMI filter --- electromagnetic compatibility --- AC–DC power converters --- electromagnetic interference filter --- matrix converters --- current source --- power density --- battery energy storage systems --- battery chargers --- active receivers --- frequency locking --- reference phase calibration --- synchronization --- wireless power transfer --- lithium-ion batteries --- SOC estimator --- parameter identification --- particle swarm optimization --- improved extended Kalman filter --- battery management system --- PMSG --- DC-link voltage control --- variable control gain --- disturbance observer --- lithium-ion power battery pack --- composite equalizer --- active equalization --- passive equalization --- control strategy and algorithm --- n/a --- common-mode inductor --- high-frequency modeling --- electromagnetic interference --- filter --- fault diagnosis --- condition monitoring --- induction machines --- support vector machines --- expert systems --- neural networks --- DC-AC power converters --- frequency-domain analysis --- impedance-based model --- Nyquist stability analysis --- small signal stability analysis --- harmonic linearization --- line start --- permanent magnet --- synchronous motor --- efficiency motor --- rotor design --- harmonics --- hybrid power filter --- active power filter --- power quality --- total harmonic distortion --- equivalent inductance --- leakage inductance --- switching frequency modelling --- induction motor --- current switching ripple --- multilevel inverter --- cascaded topology --- voltage doubling --- switched capacitor --- nearest level modulation (NLM) --- total harmonic distortion (THD) --- dead-time compensation --- power converters --- harmonics --- n/a

Applications of Power Electronics

Authors: --- ---
ISBN: 9783039210206 9783039210213 Year: Volume: 2 Pages: 500 DOI: 10.3390/books978-3-03921-021-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering --- Technology (General)
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Power electronics technology is still an emerging technology, and it has found its way into many applications, from renewable energy generation (i.e., wind power and solar power) to electrical vehicles (EVs), biomedical devices, and small appliances, such as laptop chargers. In the near future, electrical energy will be provided and handled by power electronics and consumed through power electronics; this not only will intensify the role of power electronics technology in power conversion processes, but also implies that power systems are undergoing a paradigm shift, from centralized distribution to distributed generation. Today, more than 1000 GW of renewable energy generation sources (photovoltaic (PV) and wind) have been installed, all of which are handled by power electronics technology. The main aim of this book is to highlight and address recent breakthroughs in the range of emerging applications in power electronics and in harmonic and electromagnetic interference (EMI) issues at device and system levels as discussed in ?robust and reliable power electronics technologies, including fault prognosis and diagnosis technique stability of grid-connected converters and ?smart control of power electronics in devices, microgrids, and at system levels.

Keywords

energy storage --- lithium-ion battery --- battery management system BMS --- battery modeling --- state of charge SoC --- grid-connected inverter --- power electronics --- multi-objective optimization --- switching frequency --- total demand distortion --- switching losses --- EMI filter --- power converter --- power density --- optimal design --- electrical drives --- axial flux machines --- magnetic equivalent circuit --- torque ripple --- back EMF --- permanent-magnet machines --- five-phase permanent magnet synchronous machine --- five-leg voltage source inverter --- multiphase space vector modulation --- sliding mode control --- extended Kalman filter --- voltage source inverters (VSI) --- voltage control --- current control --- digital control --- predictive controllers --- advanced controllers --- stability --- response time --- lithium-ion batteries --- electric vehicles --- battery management system --- electric power --- dynamic PV model --- grid-connected VSI --- HF-link MPPT converter --- nanocrystalline core --- SiC PV Supply --- DC–DC converters --- multi-level control --- renewable energy resources control --- electrical engineering communications --- microgrid control --- distributed control --- power system operation and control --- variable speed pumped storage system --- droop control --- vector control --- phasor model technique --- nine switch converter --- synchronous generator --- digital signal controller --- static compensator, distribution generation --- hybrid converter --- multi-level converter (MLC) --- series active filter --- power factor correction (PFC) --- field-programmable gate array --- particle swarm optimization --- selective harmonic elimination method --- voltage source converter --- plug-in hybrid electric vehicles --- power management system --- renewable energy sources --- fuzzy --- smart micro-grid --- five-phase machine --- fault-tolerant control --- induction motor --- one phase open circuit fault (1-Ph) --- adjacent two-phase open circuit fault (A2-Ph) --- volt-per-hertz control (scalar control) --- current-fed inverter --- LCL-S topology --- semi-active bridge --- soft switching --- voltage boost --- wireless power transfer --- DC–DC conversion --- zero-voltage switching (ZVS) --- transient control --- DC–DC conversion --- bidirectional converter --- power factor correction --- line frequency instability --- one cycle control --- non-linear phenomena --- bifurcation --- boost converter --- converter --- ice melting --- modular multilevel converter (MMC) --- optimization design --- transmission line --- static var generator (SVG) --- hardware-in-the-loop --- floating-point --- fixed-point --- real-time emulation --- field programmable gate array --- slim DC-link drive --- VPI active damping control --- total harmonic distortion --- cogging torque --- real-time simulation --- power converters --- nonlinear control --- embedded systems --- high level programing --- SHIL --- DHIL --- 4T analog MOS control --- high frequency switching power supply --- water purification --- modulation index --- electromagnetic interference --- chaotic PWM --- DC-DC buck converter --- CMOS chaotic circuit --- triangular ramp generator --- spread-spectrum technique --- system in package --- electric vehicle --- wireless power transfer --- inductive coupling --- coupling factor --- phase-shift control --- series-series compensation --- PSpice --- fixed-frequency double integral sliding-mode (FFDISM) --- class-D amplifier --- Q-factor --- GaN cascode --- direct torque control (DTC) --- composite active vectors modulation (CVM) --- permanent magnet synchronous motor (PMSM) --- effect factors --- double layer capacitor (DLC) models --- energy storage modelling --- simulation models --- current control loops --- dual three-phase (DTP) permanent magnet synchronous motors (PMSMs) --- space vector pulse width modulation (SVPWM) --- vector control --- voltage source inverter --- active rectifiers --- single-switch --- analog phase control --- digital phase control --- wireless power transfer --- three-level boost converter (TLBC) --- DC-link cascade H-bridge (DCLCHB) inverter --- conducting angle determination (CAD) techniques --- total harmonic distortion (THD) --- three-phase bridgeless rectifier --- fault diagnosis --- fault tolerant control --- hardware in loop --- compensation topology --- electromagnetic field (EMF) --- electromagnetic field interference (EMI) --- misalignment --- resonator structure --- wireless power transfer (WPT) --- WPT standards --- EMI filter --- electromagnetic compatibility --- AC–DC power converters --- electromagnetic interference filter --- matrix converters --- current source --- power density --- battery energy storage systems --- battery chargers --- active receivers --- frequency locking --- reference phase calibration --- synchronization --- wireless power transfer --- lithium-ion batteries --- SOC estimator --- parameter identification --- particle swarm optimization --- improved extended Kalman filter --- battery management system --- PMSG --- DC-link voltage control --- variable control gain --- disturbance observer --- lithium-ion power battery pack --- composite equalizer --- active equalization --- passive equalization --- control strategy and algorithm --- n/a --- common-mode inductor --- high-frequency modeling --- electromagnetic interference --- filter --- fault diagnosis --- condition monitoring --- induction machines --- support vector machines --- expert systems --- neural networks --- DC-AC power converters --- frequency-domain analysis --- impedance-based model --- Nyquist stability analysis --- small signal stability analysis --- harmonic linearization --- line start --- permanent magnet --- synchronous motor --- efficiency motor --- rotor design --- harmonics --- hybrid power filter --- active power filter --- power quality --- total harmonic distortion --- equivalent inductance --- leakage inductance --- switching frequency modelling --- induction motor --- current switching ripple --- multilevel inverter --- cascaded topology --- voltage doubling --- switched capacitor --- nearest level modulation (NLM) --- total harmonic distortion (THD) --- dead-time compensation --- power converters --- harmonics --- n/a

Listing 1 - 5 of 5
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (5)


License

CC by-nc-nd (5)


Language

english (4)

eng (1)


Year
From To Submit

2020 (2)

2019 (3)