Search results: Found 10

Listing 1 - 10 of 10
Sort by
Time-efficient Simulation of Surface-excited Guided Lamb Wave Propagation in Composites

Author:
Book Series: Schriftenreihe des Instituts für Technische Mechanik, Karlsruher Institut für Technologie ISSN: 16143914 ISBN: 9783866449350 Year: Volume: 18 Pages: X, 202 p. DOI: 10.5445/KSP/1000030760 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Physics (General)
Added to DOAB on : 2019-07-30 20:02:01
License:

Loading...
Export citation

Choose an application

Abstract

The methods of time-efficient simulation of surface-excited wave propagation in plate-like multilayered composites are presented. The mathematical model of wave propagation in laminated plate based on the elasticity theory is transformed and then solved in wavenumber-frequency domain. The numerical methods for computation of inverse transform in time-space domain are developed and used for analysis of wave and energy propagation phenomena occurring in composite plates due to surface excitation.

Structural Health Monitoring (SHM) of Civil Structures

Authors: --- ---
ISBN: 9783038427834 9783038427841 Year: Pages: X, 490 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering
Added to DOAB on : 2018-04-20 14:47:20
License:

Loading...
Export citation

Choose an application

Abstract

At the current time of writing, the American Society of Civil Engineers (ASCE) has awarded American infrastructure a grade of D+, meaning poor and at risk. Part of the reason for the low grade is due to the rapid deterioration of structural integrity and the inability of most places to safely meet future demands. Deficiencies in these areas may be remediated by advancements in structural health monitoring (SHM) technologies that provide sensing systems to automatically and economically diagnose structural integrity. In a sense, SHM technologies will help pave the way to intelligent structures that are able to detect damage by themselves and even warn occupants of any danger due to impending structural failure. Engineering sensors and developing smart algorithms for SHM often involves the close collaboration of a surprisingly large breadth of specialties. In this book, we have collected a thin but representative slice of the most recent research in SHM, and hope that the reader will gain an inspiring view of today’s research landscape and a notion of what is to come.

Acoustic and Elastic Waves: Recent Trends in Science and Engineering

Authors: ---
ISBN: 9783038422976 9783038422969 Year: Pages: XVI, 448 DOI: 10.3390/books978-3-03842-297-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Mathematics --- Physics (General) --- Acoustics
Added to DOAB on : 2017-02-20 08:51:20
License:

Loading...
Export citation

Choose an application

Abstract

The present Special Issue intends to explore new directions in the field of acoustics and ultrasonics. The interest includes, but is not limited to, the use of acoustic technology for condition monitoring of materials and structures.Topics of interest (among others):• Acoustic emission in materials and structures (without material limitation)• Innovative cases of ultrasonic inspection• Wave dispersion and waveguides• Monitoring of innovative materials• Seismic waves• Vibrations, damping and noise control• Combination of mechanical wave techniques with other types for structural health monitoring purposes.Experimental and numerical studies are welcome.

Civil and Military Airworthiness: Recent Developments and Challenges

Author:
ISBN: 9783039289158 / 9783039289165 Year: Pages: 272 DOI: 10.3390/books978-3-03928-916-5 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Airworthiness, as a field, encompasses the technical and non-technical activities required to design, certify, produce, maintain, and safely operate an aircraft throughout its lifespan. The evolving technology, science, and engineering methods and, most importantly, aviation regulation, offer new opportunities and create, new challenges for the aviation industry. This book assembles review and research articles across a variety of topics in the field of airworthiness: aircraft maintenance, safety management, human factors, cost analysis, structures, risk assessment, unmanned aerial vehicles and regulations. This selection of papers informs the industry practitioners and researchers on important issues.

Graphene Nanoplatelets

Authors: ---
ISBN: 9783039287949 / 9783039287956 Year: Pages: 140 DOI: 10.3390/books978-3-03928-795-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General)
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Graphene nanoplatelets (GNPs) have attracted considerable interest due to their exceptional mechanical, electrical, and thermal properties, among others. This book provides a deep review of some aspects related to the characterization of GNPs and their applications as nanoreinforcements for different types of matrices such as polymeric- or cement-based matrices. In this book, the reader will find how these nanoparticles could be used for several industrial applications such as energy production and storage or effective barrier coatings, providing a wide overview of future progress in this topic

Smart Sensors for Structural Health Monitoring

Authors: --- ---
ISBN: 9783039217588 9783039217595 Year: Pages: 342 DOI: 10.3390/books978-3-03921-759-5 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

Smart sensors are technologies designed to facilitate the monitoring operations. For instance, power consumption can be minimized through on-board processing and smart interrogation algorithms, and state detection enhanced through collaboration between sensor nodes. Applied to structural health monitoring, smart sensors are key enablers of sparse and dense sensor networks capable of monitoring full-scale structures and components. They are also critical in empowering operators with decision making capabilities. The objective of this Special Issue is to generate discussions on the latest advances in research on smart sensing technologies for structural health monitoring applications, with a focus on decision-enabling systems. This Special Issue covers a wide range of related topics such as innovative sensors and sensing technologies for crack, displacement, and sudden event monitoring, sensor optimization, and novel sensor data processing algorithms for damage and defect detection, operational modal analysis, and system identification of a wide variety of structures (bridges, transmission line towers, high-speed trains, masonry light houses, etc.).

Keywords

optical crack growth sensor --- digital sampling moiré --- 2D crack growth --- calibration --- concrete crack --- feature extraction --- mapping construction --- fuzzy classification --- rotary ultrasonic array --- bending stiffness --- damage identification --- environmental noise --- bridge --- test vehicle --- structural impact monitoring --- sensors distribution optimization --- NSGA-II --- energy analysis of wavelet band --- principal component analysis --- transmission tower --- settlement --- wind force --- acceleration --- modal frequencies --- sudden event monitoring --- wireless smart sensors --- demand-based nodes --- event-triggered sensing --- data fusion --- patch antenna --- sensor --- structural health monitoring --- crack identification --- resonant frequency --- damage identification --- sensor optimization --- Virtual Distortion Method (VDM) --- Particle Swarm Optimization (PSO) algorithm --- sensitivity --- structural health monitoring --- piezoelectric wafer active sensors --- active sensing --- passive sensing --- damage detection --- acoustic emission --- uniaxial stress measurement --- structural steel members --- amplitude spectrum --- phase spectrum --- shear-wave birefringence --- acoustoelastic effect --- damage detection --- smartphones --- steel frame --- shaking table tests --- wavelet packet decomposition --- low-velocity impacts --- strain wave --- impactor stiffness --- data processing --- feature selection --- impact identification --- crack --- strain --- distributed dense sensor network --- structural health monitoring --- fibre bundle --- reflective optical sensor --- tip clearance --- turbine --- aero engine --- principal component analysis --- space window --- time window --- damage detection --- length effect --- stress detection --- electromagnetic oscillation --- steel strand --- concrete structures --- SHM --- stretching method --- model updating --- displacement sensor --- helical antenna --- resonant frequency --- perturbation theory --- normal mode --- wheel minor defect --- high-speed train --- online wayside detection --- Bayesian blind source separation --- FBG sensor array

Sensors for Ultrasonic NDT in Harsh Environments

Authors: ---
ISBN: 9783039284221 / 9783039284238 Year: Pages: 120 DOI: 10.3390/books978-3-03928-423-8 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

In this Special Issue of Sensors, seven peer-reviewed manuscripts appear on the topic of ultrasonic transducer design and operation in harsh environments: elevated temperature, high gamma and neutron radiation fields, or the presence of aggressive chemicals. Motivations for these research and development projects are strongly focused on nuclear power plant inspections (particularly liquid-sodium cooled reactors), and nondestructive testing of high-temperature piping installations. It is anticipated that extensive use of permanently mounted robust transducers for in-service monitoring of petrochemical plants and power generations stations; quality control in manufacturing plants; and primary and secondary process monitoring in the fabrication of engineering materials will soon be made.

Structural Prognostics and Health Management in Power & Energy Systems

Authors: --- --- --- --- et al.
ISBN: 9783039217663 9783039217670 Year: Pages: 218 DOI: 10.3390/books978-3-03921-767-0 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Philosophy
Added to DOAB on : 2020-01-30 16:39:46
License:

Loading...
Export citation

Choose an application

Abstract

The idea of preparing an Energies Special Issue on “Structural Prognostics and Health Management in Power & Energy Systems” is to compile information on the recent advances in structural prognostics and health management (SPHM). Continued improvements on SPHM have been made possible through advanced signature analysis, performance degradation assessment, as well as accurate modeling of failure mechanisms by introducing advanced mathematical approaches/tools. Through combining deterministic and probabilistic modeling techniques, research on SPHM can provide assurance for new structures at a design stage and ensure construction integrity at a fabrication phase. Specifically, power and energy system failures occur under multiple sources of uncertainty/variability resulting from load variations in usage, material properties, geometry variations within tolerances, and other uncontrolled variations. Thus, advanced methods and applications for theoretical, numerical, and experimental contributions that address these issues on SPHM are desired and expected, which attempt to prevent overdesign and unnecessary inspection and provide tools to enable a balance between safety and economy to be achieved. This Special Issue has attracted submissions from China, USA, Portugal, and Italy. A total of 26 submissions were received and 11 articles finally published.

Keywords

prognostics --- residual useful life --- similarity-based approach --- supporting vector machine (SVM) --- reliability --- non-probabilistic reliability index --- sensitivity analysis --- techno-economic assessments --- life cycle cost --- vibration transmission mechanism --- underground powerhouse --- lateral-river vibration --- low frequency tail fluctuation --- rotation of hydraulic generator --- vertical axis wind turbine --- structural health monitoring --- operational modal analysis --- stochastic subspace identification --- vibration test --- offshore structures --- oil and gas platforms --- offshore wind turbines --- retrofitting activities --- renewable energy --- dynamic analysis --- wind and wave analysis --- dynamic analysis of the structure --- wave–structure interaction (WSI) --- probabilistic analyses of stochastic processes and frequency --- data-driven --- machine learning --- deep learning --- DNN --- prognostic and Health Management --- lithium-ion battery --- wind turbines --- health monitoring --- fault detection --- optimized deep belief networks --- supervisory control and data acquisition system --- multioperation condition --- wind turbine blade --- full-scale static test --- neural networks --- strain prediction --- dynamic fuzzy reliability analysis --- extremum surface response method --- weighted regression --- turbine blisk --- fuzzy safety criterion --- lithium-ion battery --- remaining useful life --- regeneration phenomenon --- wavelet decomposition --- NAR neural network --- empirical mode decomposition --- analysis mode decomposition --- analysis-empirical mode decomposition --- mode mixing --- sifting stop criterion

Ultrasonic Guided Waves

Author:
ISBN: 9783039282982 9783039282999 Year: Pages: 376 DOI: 10.3390/books978-3-03928-299-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

The propagation of ultrasonic guided waves in solids is an important area of scientific inquiry, primarily due to their practical applications for nondestructive characterization of materials, such as nondestructive inspection, quality assurance testing, structural health monitoring, and providing a material state awareness. This Special Issue of Applied Sciences covers all aspects of ultrasonic guided waves (e.g., phased array transducers, meta-materials to control wave propagation characteristics, scattering, attenuation, and signal processing techniques) from the perspective of modeling, simulation, laboratory experiments, or field testing. In order to fully utilize ultrasonic guided waves for these applications, it is necessary to have a firm grasp of their requisite characteristics, which include that they are multimodal, dispersive, and are comprised of unique displacement profiles through the thickness of the waveguide.

Keywords

electromagnetic wave --- group velocity --- time-frequency domain reflectometry --- dispersive medium --- ultrasonic guided wave --- nondestructive testing --- square steel bar --- non-detection zone --- surface flaw --- Rayleigh wave --- scattering --- modified BEM --- reconstruction --- adhesive joint --- single lap joint --- non-destructive testing --- damage identification --- Lamb waves --- scanning laser vibrometry --- signal processing --- ultrasonic guided waves --- axial transmission --- ultrasonic guided waves --- fiber optics --- fiber Bragg grating --- nondestructive testing --- structural health monitoring --- pipe inspection --- partial wave method --- slowness curves --- lamb wave --- stoneley wave --- mode sorting --- acoustic leakage --- rayleigh wave --- surface waves --- elastodynamics --- guided waves --- lamb wave --- dispersion curves --- phase velocity --- group velocity --- signal processing --- SH0 mode --- circumferential scanning --- synthetic aperture focusing --- exploding reflector model --- Lamb wave --- local wavenumber --- air-coupled transducer --- wavenumber domain filtering --- hybrid and non-contact system --- signal processing --- SNR --- split-spectrum processing --- ultrasonic guided waves --- signal processing --- defect detection --- spatial domain --- array analysis --- pipeline inspection --- ultrasonic guided waves (UGWs) --- metamaterial --- resonator --- low-frequency --- lamb wave --- adaptive filtering --- leaky normalized mean square --- ultrasonic guided waves --- pipeline inspection --- SNR enhancement --- signal processing --- guided wave --- multi-wire cable --- wave structure --- contact acoustic nonlinearity --- energy transfer --- rail --- ultrasonic guided wave --- semi-analytical finite element --- single mode extraction algorithm --- defect location --- signal processing --- defect detection --- torsional wave --- power spectrum --- sliding window --- pipeline inspection --- ultrasonic guided-waves (UGWs) --- magnetostrictive patch transducer --- shear mode --- soft magnetic patch --- dynamic magnetic field optimization --- signal strength enhancement --- acoustic emission --- nondestructive testing --- leakage location --- fault diagnosis --- n/a --- lamb waves --- composite --- ultrasonic testing --- numerical modelling --- pressure vessels

Non-destructive Testing of Materials in Civil Engineering

Author:
ISBN: 9783039216901 9783039216918 Year: Pages: 448 DOI: 10.3390/books978-3-03921-691-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

This book was proposed and organized as a means to present recent developments in the field of nondestructive testing of materials in civil engineering. For this reason, the articles highlighted in this editorial relate to different aspects of nondestructive testing of different materials in civil engineering—from building materials to building structures. The current trend in the development of nondestructive testing of materials in civil engineering is mainly concerned with the detection of flaws and defects in concrete elements and structures, and acoustic methods predominate in this field. As in medicine, the trend is towards designing test equipment that allows one to obtain a picture of the inside of the tested element and materials. From this point of view, interesting results with significance for building practices have been obtained

Keywords

non-destructive testing --- masonry structures --- strengthening --- ultrasonic tomography --- adhesion assessment --- autoclaved aerated concrete (AAC) --- compressive strength --- shape and size of specimen --- moisture of AAC --- ultrasonic testing --- gantry crane --- RMF technique --- civil engineering --- fibre-cement boards --- non-destructive testing --- acoustic emission --- degree of degradation --- thermovision --- active thermography --- thermal contrast --- defect detection --- location of inclusions --- non-destructive testing --- materials research --- building partition --- cement-based composites --- fiber cement boards --- durability --- ultrasound measurements --- spun concrete --- micro-computed tomography --- nanoindentation --- deconvolution --- mathematical morphology --- non-destructive evaluation --- structural damage --- natural frequency --- singular value truncation --- multiple feedbacks --- data noise --- NDT methods --- rebar location --- eddy-current method --- GPR method --- concrete --- concrete mix design --- concrete strength prediction --- data mining --- machine learning --- timber structures --- non-destructive methods --- ultrasonic wave --- stress wave --- drilling resistance --- X-ray micro-computed tomography --- waste brick dust --- adsorption --- lead --- cesium --- surface complexation --- precipitation --- solid-state NMR spectroscopy --- Lamb waves --- scanning laser vibrometry --- adhesive joints --- non-destructive testing --- damage detection --- excitation frequency --- nondestructive testing --- thermography --- monitoring of structures --- reinforced concrete chimney --- corrosion processes --- service life of a structure --- viscoelastic parameters --- creep test --- fatigue tests --- asphalt mixtures --- Burgers model --- four point bending beam --- pattern recognition --- acoustic emission --- Structural Health Monitoring --- brittle fracture --- diagnostics --- non-destructive testing --- reinforced concrete grandstand stadium --- vibration analysis --- crowd-induced excitation --- structural tuning --- concrete slabs and floorings --- horizontal casting --- compressive strength --- ultrasonic tests --- fibre-cement boards --- non-destructive testing --- acoustic emission --- artificial neural networks --- SEM --- non-destructive method --- damage --- mercury intrusion porosimetry --- X-ray computed tomography --- acoustic emission AE --- acoustic spectrum --- quasi brittle cement composites --- destruction process --- resistance measurement --- wood moisture sensing --- non-destructive testing --- moisture safety --- cellulose fibre cement boards --- microstructure --- nanoindentation --- SEM-EDS analysis --- temperature --- concrete elements --- concrete strength --- reinforced concrete tanks --- concrete corrosion --- sulphate corrosion --- ultrasound tests --- rebound hammer --- SilverSchmidt --- concrete --- compressive strength --- non-destructive testing --- non-destructive testing --- diagnostic --- acoustic methods --- ultrasound --- building materials --- defects

Listing 1 - 10 of 10
Sort by
Narrow your search