Search results: Found 6

Listing 1 - 6 of 6
Sort by
Ontologie-basierte Monosemierung

Author:
ISBN: 9783866449589 Year: Pages: XVI, 331 p. DOI: 10.5445/KSP/1000031500 Language: GERMAN
Publisher: KIT Scientific Publishing
Subject: Business and Management
Added to DOAB on : 2019-07-30 20:01:59
License:

Loading...
Export citation

Choose an application

Abstract

According to the Semantic Web a formal representation of knowledge is described by an ontology. This formal representation enables a unique identification of elements within an ontology. By the use of natural language for element annotation, ambiguity occurs and a unique element identification based on natural language cannot be guaranteed. This book describes an approach to identify the most relevant element described by a natural language term by reducing the aspect of ambiguity to a minimum.

Experimental and Numerical Studies in Biomedical Engineering

Authors: ---
ISBN: 9783039212477 9783039212484 Year: Pages: 130 DOI: 10.3390/books978-3-03921-248-4 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 16:10:12
License:

Loading...
Export citation

Choose an application

Abstract

The term ‘biomedical engineering’ refers to the application of the principles and problem-solving techniques of engineering to biology and medicine. Biomedical engineering is an interdisciplinary branch, as many of the problems health professionals are confronted with have traditionally been of interest to engineers because they involve processes that are fundamental to engineering practice. Biomedical engineers employ common engineering methods to comprehend, modify, or control biological systems, and to design and manufacture devices that can assist in the diagnosis and therapy of human diseases. This Special Issue of Fluids aims to be a forum for scientists and engineers from academia and industry to present and discuss recent developments in the field of biomedical engineering. It contains papers that tackle, both numerically (Computational Fluid Dynamics studies) and experimentally, biomedical engineering problems, with a diverse range of studies focusing on the fundamental understanding of fluid flows in biological systems, modelling studies on complex rheological phenomena and molecular dynamics, design and improvement of lab-on-a-chip devices, modelling of processes inside the human body as well as drug delivery applications. Contributions have focused on problems associated with subjects that include hemodynamical flows, arterial wall shear stress, targeted drug delivery, FSI/CFD and Multiphysics simulations, molecular dynamics modelling and physiology-based biokinetic models.

Advances in Experimental and Computational Rheology

Authors: ---
ISBN: 9783039213337 9783039213344 Year: Pages: 224 DOI: 10.3390/books978-3-03921-334-4 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General)
Added to DOAB on : 2019-12-09 16:10:12
License:

Loading...
Export citation

Choose an application

Abstract

Rheology, defined as the science of deformation and flow of matter, is a multidisciplinary scientific field, covering both fundamental and applied approaches. The study of rheology includes both experimental and computational methods, which are not mutually exclusive. Its practical importance embraces many processes, from daily life, like preparing mayonnaise or spread an ointment or shampooing, to industrial processes like polymer processing and oil extraction, among several others. Practical applications include also formulations and product development. This Special Issue aims to present the latest advances in the fields of experimental and computational rheology applied to the most diverse classes of materials (foods, cosmetics, pharmaceuticals, polymers and biopolymers, multiphasic systems and composites) and processes. This Special Issue will comprise, not only original research papers, but also review articles.

Optoelectronic Nanodevices

Author:
ISBN: 9783039286966 / 9783039286973 Year: Pages: 338 DOI: 10.3390/books978-3-03928-697-3 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

During the last decade, novel graphene related materials (GRMs), perovskites, as well as metal oxides and other metal nanostructures have received the interest of the scientific community. Due to their extraordinary physical, optical, thermal, and electrical properties, which are correlated with their 2D ultrathin atomic layer structure, large interlayer distance, ease of functionalization, and bandgap tunability, these nanomaterials have been applied in the development or the improvement of innovative optoelectronic applications, as well as the expansion of theoretical studies and simulations in the fast-growing fields of energy (photovoltaics, energy storage, fuel cells, hydrogen storage, catalysis, etc.), electronics, photonics, spintronics, and sensing devices. The continuous nanostructure-based applications development has provided the ability to significantly improve existing products and to explore the design of materials and devices with novel functionalities. This book demonstrates some of the most recent trends and advances in the interdisciplinary field of optoelectronics. Most articles focus on light emitting diodes (LEDs) and solar cells (SCs), including organic, inorganic, and hybrid configurations, whereas the rest address photodetectors, transistors, and other well-known dynamic optoelectronic devices. In this context, this exceptional collection of articles is directed at a broad scientific audience of chemists, materials scientists, physicists, and engineers, with the goals of highlighting the potential of innovative optoelectronic applications incorporating nanostructures and inspiring their realization.

Keywords

localized surface plasmon --- green LED --- cathodoluminescence --- FDTD --- NiCo2S4 nanotubes --- Ti porous film --- quantum dot --- solar cells --- counter electrode --- metasurfaces --- orthogonal polarization --- high-efficiency --- polarization analyzer --- green LEDs --- InGaN/GaN superlattice --- V-pits --- external quantum efficiency --- PeLEDs --- OAB --- perovskite --- quantum confinement effect --- transparent electrode --- Ag film --- nucleation layer --- organic solar cell --- graphene oxide --- oxidation --- photodetector --- light-emitting diodes --- quantum dots --- stability --- color-conversion efficiency --- photoluminescence --- p-type InGaN --- graded indium composition --- hole injection --- quantum efficiency --- green LED --- 2D perovskite --- controllable synthesis --- flexible substrate --- photodetector --- photoelectric performance --- photodetector --- organic --- photomultiplication --- tunneling --- external quantum efficiency --- liquid crystals --- metasurfaces --- plasmonics --- actively tunable nanodevices --- solvent --- compact --- smooth --- perovskite solar cells --- indium nanoparticles (In NPs) --- textured silicon solar cells --- antireflective coating (ARC) --- plasmonic forward scattering --- InN/p-GaN heterojunction --- interface --- photovoltaics --- GaN --- LED --- nano-grating --- metamaterials --- mid infrared --- graphene split-ring --- gold split-ring --- electromagnetically induced transparency effect --- transparent conductive electrode --- Ga2O3 --- AlGaN-based ultraviolet light-emitting diode --- transmittance --- sheet resistance --- electrowetting --- tunable absorbers --- subwavelength metal grating --- plasmon resonance --- field emission --- graphene --- reduced graphene oxide --- polymer composites --- graphene ink --- cold cathode --- Fowler–Nordheim --- CdTe microdots --- Schottky barrier --- photodetector --- piezo-phototronic effect --- UV LEDs --- double-layer ITO --- pinhole pattern --- current spreading --- light output power --- flip-chip mini-LED --- prism-structured sidewall --- waveguide photons --- light extraction --- erbium --- silicon transistor --- photocurrent --- colorimetry --- excitation wavelength --- light-emitting diode --- quantum dots --- ternary organic solar cells --- graphene ink --- functionalization --- air-processed --- cascade effect --- charge transfer --- n/a

Emerging Memory and Computing Devices in the Era of Intelligent Machines

Author:
ISBN: 9783039285020 / 9783039285037 Year: Pages: 276 DOI: 10.3390/books978-3-03928-503-7 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Computing systems are undergoing a transformation from logic-centric towards memory-centric architectures, where overall performance and energy efficiency at the system level are determined by the density, performance, functionality and efficiency of the memory, rather than the logic sub-system.

Keywords

3D-stacked --- DRAM --- in-DRAM cache --- low-latency --- low-power --- resistive memory --- crossbar --- in-memory computing --- analogue computing --- matrix-vector multiplication --- ECG --- voltage-controlled magnetic anisotropy --- magnetoresistive random access memory --- magnetic tunnel junction --- bioelectronic devices --- bionanohybrid material --- biomemory --- biologic gate --- bioprocessor --- protein --- nucleic acid --- nanoparticles --- SONOS --- flash memory --- charge spreading --- plasma treatment --- Oxygen-related trap --- data retention --- BCH --- decoder --- iBM --- GPU --- hybrid --- flash memory --- Galois field --- CUDA --- in-memory computing --- logic-in-memory --- non-von Neumann architecture --- configurable logic-in-memory architecture --- memory wall --- convolutional neural networks --- emerging technologies --- perpendicular Nano Magnetic Logic (pNML) --- silicon oxide-based memristors --- resistance switching mechanism --- variability --- conductive filament --- Weibull distribution --- quantum point contact --- real-time system --- dynamic voltage scaling --- task placement --- low-power technique --- nonvolatile memory --- neuromorphic system --- Hebbian training --- guide training --- memristor --- image classification --- STT-MRAM --- flip-flop --- power gating --- low-power --- bipolar resistive switching characteristics --- annealing temperatures --- solution-based dielectric --- resistive random access memory (RRAM) --- multi-level cell --- phase change memory --- programmable ramp-down current pulses --- Fast Fourier Transform --- in-memory computing --- associative processor --- non-von neumann architecture --- in-memory computing --- memristor --- RISC-V --- Internet of things --- blockchain --- U-shape recessed channel --- floating gate --- neuromorphic computing --- MCU (microprogrammed control unit) --- chalcogenide --- electrochemical metallization cell --- electrochemical metallization (ECM) --- ion conduction --- memristor --- self-directed channel (SDC) --- memristor --- crossbar array --- wire resistance --- synaptic weight --- character recognition --- n/a

Selected Problems in Fluid Flow and Heat Transfer

Author:
ISBN: 9783039214273 9783039214280 Year: Pages: 460 DOI: 10.3390/books978-3-03921-428-0 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Fluid flow and heat transfer processes play an important role in many areas of science and engineering, from the planetary scale (e.g., influencing weather and climate) to the microscopic scales of enhancing heat transfer by the use of nanofluids; understood in the broadest possible sense, they also underpin the performance of many energy systems. This topical Special Issue of Energies is dedicated to the recent advances in this very broad field. This book will be of interest to readers not only in the fields of mechanical, aerospace, chemical, process and petroleum, energy, earth, civil ,and flow instrumentation engineering but, equally, biological and medical sciences, as well as physics and mathematics; that is, anywhere that “fluid flow and heat transfer” phenomena may play an important role or be a subject of worthy research pursuits.

Keywords

performance characteristics --- Positive Temperature Coefficient (PTC) elements --- heat transfer --- thermal performance --- Computational Fluid Dynamics (CFD) simulation --- air heater --- impingement heat transfer enhancement --- orthogonal jet --- turbulence --- flat plate --- Colebrook equation --- Colebrook-White --- flow friction --- iterative procedure --- logarithms --- Padé polynomials --- hydraulic resistances --- turbulent flow --- pipes --- computational burden --- thermodynamic --- numerical simulation --- thermal effect --- axial piston pumps --- microbubble pump --- bubble generation --- pump efficiency --- bubble size --- concentration --- particle counter --- flow-induced motion --- sharp sections --- T-section prism --- load resistances --- section aspect ratios --- energy conversion --- thermosyphon --- phase change --- two-phase flow --- visualization --- superheated steam --- triaxial stress --- thermogravimetry --- X-ray microtomography --- thermal cracking --- microbubbles --- fluidics --- flow oscillation --- oscillators --- energetics --- pressure loss --- pressure drop --- friction factor --- multiphase flow --- flow rate --- flow regime --- POD --- entropy generation --- boundary layer --- laminar separation bubble --- two-phase flow --- pump performance --- computational fluid dynamics --- centrifugal pump --- flow behavior --- magnetic field --- ferrofluid --- porous cavity --- heat transfer --- mass transfer --- numerical modeling --- numerical modeling --- surrogate model --- correlation --- fin-tube --- spiral fin-tube --- CFD --- ( A g ? F e 3 O 4 / H 2 O ) hybrid nanofluid --- nonlinear thermal radiation --- heat transfer --- chemical reaction --- mass transfer --- method of moment --- numerical results --- transient analysis --- pumps --- moment of inertia --- water hammer --- pipe flow --- wind turbine --- downwind --- tower shadow --- load --- tower --- BEM --- actuator disc --- CANDU-6 --- PHWR --- moderator --- turbulence --- OpenFOAM --- printed circuit heat exchanger --- supercritical LNG --- zigzag type --- heat transfer performance --- gas turbine engine --- particle deposition --- capture efficiency --- multiphase flow --- tip leakage flow --- detached-eddy simulation --- vortex breakdown --- transonic compressor --- POD --- tip leakage flow --- decomposition region --- decomposition dimensionalities --- vortex identification --- SPIV --- fire-spreading characteristics --- real vehicle experiments --- toxic gases --- temperature distributions --- unsteady heat release rate --- thermal energy recovery --- flue gas --- dew point temperature --- condensation --- Aspen® --- thermoacoustic electricity generator --- multi-stage --- traveling-wave heat engine --- push-pull --- inertance-compliance --- acoustic streaming --- n/a

Listing 1 - 6 of 6
Sort by
Narrow your search