Search results: Found 3

Listing 1 - 3 of 3
Sort by
Biochar as Soil Amendment: Impact on Soil Properties and Sustainable Resource Management

Author:
ISBN: 9783039282746 9783039282753 Year: Pages: 252 DOI: 10.3390/books978-3-03928-275-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Agriculture (General)
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

The role of biochar in improving soil fertility is increasingly being recognized and is leading to recommendations of biochar amendment of degraded soils. In addition, biochars offer a sustainable tool for managing organic wastes and to produce added-value products. The benefits of biochar use in agriculture and forestry can span enhanced plant productivity, an increase in soil C stocks, and a reduction of nutrient losses from soil and non-CO2 greenhouse gas emissions. Nevertheless, biochar composition and properties and, therefore, its performance as a soil amendment are highly dependent on the feedstock and pyrolysis conditions. In addition, due to its characteristics, such as high porosity, water retention, and adsorption capacity, there are other applications for biochar that still need to be properly tested. Thus, the 16 original articles contained in this book, which were selected and evaluated for this Special Issue, provide a comprehensive overview of the biological, chemicophysical, biochemical, and environmental aspects of the application of biochar as soil amendment. Specifically, they address the applicability of biochar for nursery growth, its effects on the productivity of various food crops under contrasting conditions, biochar capacity for pesticide retention, assessment of greenhouse gas emissions, and soil carbon dynamics. I would like to thank the contributors, reviewers, and the support of the Agronomy editorial staff, whose professionalism and dedication have made this issue possible.

Fertilizer Application on Crop Yield

Author:
ISBN: 9783038976547 Year: Pages: 252 DOI: 10.3390/books978-3-03897-655-4 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Agriculture (General) --- Biology --- Science (General)
Added to DOAB on : 2019-04-05 10:34:31
License:

Loading...
Export citation

Choose an application

Abstract

This book is a printed edition of the Special Issue Fertilizer Application on Crop Yield that was published in Agronomy

Keywords

soil organic matter --- soil biota --- soil acidity --- soil erosion --- fertilizer management --- site-specific nutrient management --- balanced use of fertilizers --- integrated nutrient management --- agronomic response --- calcium --- Copper --- NPK amendments --- Value Cost Ratio --- Zinc --- nitrogen use efficiency (NUE) --- nitrate assimilation --- nitrate reductase activity --- maize --- nitrate --- ammonia --- NADH --- NADH-dehydrogenase --- Complex I --- site-specific K management --- soil K supply --- maize yield response to K --- maize crop manager --- nutrient expert for maize --- durum wheat --- mineral N --- organic N --- S fertilization --- grain quality --- grain yield --- phosphorous --- potassium --- corn–soybean rotation --- management --- production system --- organic farming --- conventional farming --- organic nutrients --- chemical fertilizers --- global food demand --- agroforestry system --- evergreen agriculture --- biofertilizer --- Bacillus pumilus --- growth promotion --- N fertilizer --- rice --- yield --- green manure --- nitrogen uptake --- Orychophragmus violaceus L. --- soil nitrogen pools --- grain yield --- Zea mays L. --- hybrid rice --- K use efficiency --- potassium --- saline tract --- soil N supply --- soil N mineralization --- N fertilization --- potentially mineralizable N --- humid Mediterranean climate --- conservation agriculture --- NUE --- nitrogen recovery efficiency --- nitrogen physiological recovery --- wheat yields --- Agrotain® urea --- rice-wheat system --- organic farming --- forage legume --- long-term productivity --- soil health --- economics --- integrated nutrient management --- rice --- wheat --- yield --- net returns --- soil health --- sustainability

Carbon, Nitrogen and Phosphorus Cycling in Forest Soils

Author:
ISBN: 9783038976820 9783038976837 Year: Pages: 238 DOI: 10.3390/books978-3-03897-683-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Forestry
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

The majority of carbon stored in the soils of the world is stored in forests. The refractory nature of some portions of forest soil organic matter also provides the slow, gradual release of organic nitrogen and phosphorus to sustain long term forest productivity. Contemporary and future disturbances, such as climatic warming, deforestation, short rotation sylviculture, the invasion of exotic species, and fire, all place strains on the integrity of this homeostatic system of C, N, and P cycling. On the other hand, the CO2 fertilization effect may partially offset losses of soil organic matter, but many have questioned the ability of N and P stocks to sustain the CO2 fertilization effect.

Keywords

carbon distribution index --- moisture gradient --- soil organic matter fraction --- soil degradation --- soil available nitrogen --- soil available phosphorus --- temperature --- stand density --- charcoal --- forest soil --- carbon mineralization --- microbial activity --- nitrification --- polyphenols --- temperature --- soil microbial communities --- PLFA --- seasons --- nitrogen dynamics --- gross nitrogen transformations --- Daxing’an Mountains --- climatic factors --- soil nutrients --- forest types --- principal component analyses --- soil structure --- soil pH --- Oxisol --- variable-charge soils --- aluminum accumulator --- seasonal trends --- beech forests --- soil enzymes --- organic matter --- multilevel models --- near natural forest management --- Pinus massoniana plantation --- Cunninghamia lanceolata plantation --- soil greenhouse gas flux --- biolability --- tree-DOM --- dissolved organic matter (DOM) --- carbon --- dissolved organic carbon (DOC) --- stemflow --- throughfall --- alpine forest --- ammonia-oxidizing bacteria --- ammonia-oxidizing archaea --- ammonium --- nitrate --- revegetation --- microbial biomass --- chloroform fumigation extraction --- enzyme activities --- stoichiometric homeostasis --- the Three Gorges Reservoir --- Eucalyptus sp. --- wood volume --- second production cycle --- annual increment average --- soil fertility --- nutrient cycling --- Chamaecyparis forest --- humic substances --- 31P nuclear magnetic resonance spectroscopy (31P NMR) --- P species --- topography --- net primary productivity --- climate zone --- climate --- soil N --- litter N --- climate change --- manuring --- manure pelleting --- northern temperate --- pyrolysis --- information review --- leaf N:P ratio --- P resorption efficiency --- soil P fractions --- P stock --- stand age

Listing 1 - 3 of 3
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (3)


License

CC by-nc-nd (3)


Language

english (3)


Year
From To Submit

2020 (1)

2019 (2)