Search results: Found 14

Listing 1 - 10 of 14 << page
of 2
>>
Sort by
Model based detection and reconstruction of road traffic accidents

Author:
ISBN: 3937300341 Year: Pages: IV, 225 p. DOI: 10.5445/KSP/1000001370 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:01:58

Loading...
Export citation

Choose an application

Abstract

This thesis describes the detection and reconstruction of traffic accidents with event data recorders.The underlying idea is to describe the vehicle motion and dynamics up to the stability limit by means of linear and non-linear vehicle models. These models are used to categorize the driving behavior and to freeze the recorded data in a memory if an accident occurs.Based on these data, among others the vehicle trajectory is reconstructed with fuzzy data fusion. The side slip angle which is a crucial quantity describing the vehicle stability is estimated with non-linear state observers and Kalman-Filters. The methodologies presented may lead from accident reconstruction considered here to accident avoidance.

Process-Structure-Property Relationships in Metals

Author:
ISBN: 9783038424574 9783038424567 Year: Pages: VI, 274 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Chemistry (General)
Added to DOAB on : 2017-07-21 08:43:06
License:

Loading...
Export citation

Choose an application

Abstract

In this Special Issue of Metals, an open access forum is provided for publishing original papers that the covers direct and effective correlations between a wide range of thermomechanical processing routes and generated microstructure, hence, the final physical and mechanical properties of the materials. The following aspects of the science and engineering of various metals and alloys are covered in this book:• Original research studies that relate to the understanding of the properties obtained following specific processing/heat treatment route (Experimental, theoretical, and simulation modeling).• Understanding the mechanisms involved in microstructure evolution and phase transformation during processing of materials, specifically as they relate to the understanding of final mechanical properties.• Nano/micro/macro structure characterization and chemistry of metals/alloys used in automotive, power generation, nuclear, aerospace, and medical applications.• Micro/macro texture devolvement during thermo-mechanical processing of metals/alloys.

Recent Developments of Nanofluids

Author:
ISBN: 9783038428336 9783038428343 Year: Pages: VIII, 150 Language: Englisch
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Mathematics --- Physics (General) --- Chemistry (General)
Added to DOAB on : 2018-08-24 15:50:37
License:

Loading...
Export citation

Choose an application

Abstract

Over the past two decades, there has been increased attention in the research of nanofluid due to its widely expanded domain in many industrial and technological applications. Major advances in the modeling of key topics such as nanofluid, MHD, heat transfer, convection, porous media, Newtonian/non-Newtonian fluids have been made and finally published in the special issue on recent developments in nanofluids for Applied Sciences. The present attempt is to edit the special issue in a book form. Although, this book is not a formal textbook even than it will definitely be useful for research students and university teachers in overcoming the difficulties occurring in the said topic while dealing with the nonlinear governing equations. On one side the real world problems in mathematics, physics, biomechanics, engineering and other disciplines of sciences are mostly described by the set of nonlinear equations whereas on the other hand, it is often more difficult to get an analytic solution or even a numerical one. This book has successfully handled this challenging job with latest techniques. In addition the findings of the simulation are logically realistic and meet the standard of sufficient scientific value.

Whose History? Engaging History Students through Historical Fiction

Author:
ISBN: 9781922064509 Year: Pages: 280 DOI: 10.20851/whose-history Language: English
Publisher: University of Adelaide Press
Subject: Education
Added to DOAB on : 2013-07-29 04:43:56
License:

Loading...
Export citation

Choose an application

Abstract

Whose History? aims to illustrate how historical novels and their related genres may be used as an engaging teacher/learning strategy for student teachers in pre-service teacher education courses. It does not argue all teaching of History curriculum in pre-service units should be based on the use of historical novels as a stimulus, nor does it argue for a particular percentage of the use of historical novels in such courses. It simply seeks to argue the case for this particular approach, leaving the extent of the use of historical novels used in History curriculum units to the professional expertise of the lecturers responsible for the units.

Structural Control of Mineral Deposits. Theory and Reality

Author:
ISBN: 9783038977841 9783038977858 Year: Pages: 256 DOI: 10.3390/books978-3-03897-785-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General)
Added to DOAB on : 2019-06-26 10:09:00
License:

Loading...
Export citation

Choose an application

Abstract

""Structural Control"" remains a crucial point that frequently lacks in any scientific and/or economic analysis of ore deposits, whatever their type and class. The case of lode deposits is exemplary, although also other deposits, like breccia pipe, stockwerk, massive sulphides, skarn, etc., can, surprisingly, be concerned. Several concepts like the gold-bearing shear zone have not proven valid during the last few decades in terms of our understanding of gold deposit and have been totally abandoned. Additionally, the relationships between magmatism, regional tectonic context, and mineralization remain uncertain and have been debated in several recent publications. This demonstrates that this issue is still relevant, and its solution may help in the distinction between intrusion-related and orogenic deposits. In this Special Issue, we particularly invite any case study of mineral deposits, in which it has been demonstrated that structural geology may have a significant role in the establishment of the deposit model of formation and/or on exploration and exploitation programs. Examples in which the structural model diverges from those described in the classical literature are particularly welcomed, including studies in which relationships with magmatism can be suspected and/or demonstrated. Indeed, all cases that illustrate concepts that differ from the classic ones and from theoretical models may represent significant contributions to this volume.

Symmetry and Fluid Mechanics

Author:
ISBN: 9783039284269 9783039284276 Year: Pages: 446 DOI: 10.3390/books978-3-03928-427-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

Since the 1980s, attention has increased in the research of fluid mechanics due to its wide application in industry and phycology. Major advances have occurred in the modeling of key topics such Newtonian and non-Newtonian fluids, nanoparticles, thermal management, and physiological fluid phenomena in biological systems, which have been published in this Special Issue on symmetry and fluid mechanics for Symmetry. Although, this book is not a formal textbook, it will be useful for university teachers, research students, and industrial researchers and for overcoming the difficulties that occur when considering the nonlinear governing equations. For such types of equations, obtaining an analytic or even a numerical solution is often more difficult. This book addresses this challenging job by outlining the latest techniques. In addition, the findings of the simulation are logically realistic and meet the standard of sufficient scientific value.

Keywords

stagnation point flow --- numerical solution --- magnetic field --- nanofuid --- unsteady rotating flow --- porous medium --- aqueous suspensions of CNT’s --- nonlinear thermal radiation --- viscous dissipation effect --- HAM --- chemical reaction --- activation energy --- peristalsis --- couple stress fluid --- nanoparticle --- Keller-box method --- Newtonian heating --- nonlinear thermal radiation --- nonlinear stretching cylinder --- homogeneous/heterogeneous reactions --- nanofluid --- steady laminar flow --- nanofluid --- heat source/sink --- magnetic field --- stretching sheet --- SWCNT/MWCNT nanofluid --- thin needle --- classical and fractional order problems --- APCM technique --- SWCNTs --- MWCNTs --- stretched surface --- rotating system --- nanofluid --- MHD --- thermal radiation --- HAM --- nonlinear hydroelastic waves --- uniform current --- thin elastic plate --- solitary waves --- PLK method --- Permeable walls --- suction/injection --- nanofluids --- porous medium --- mixed convection --- magnetohydrodynamic (MHD) --- dual solution --- stability analysis --- Darcy Forchheimer model --- nanofluid --- exponential sheet --- Jeffrey fluid --- laminar g-Jitter flow --- inclined stretching sheet --- heat source/sink --- Magnetohydrodynamic (MHD) --- Jefferey, Maxwell and Oldroyd-B fluids --- Cattaneo–Christov heat flux --- homogeneous–heterogeneous reactions --- analytical technique --- Numerical technique --- viscous fluid --- Caputo–Fabrizio time-fractional derivative --- Laplace and Fourier transformations --- side walls --- oscillating shear stress --- forced convection --- microducts --- Knudsen number --- Nusselt number --- artificial neural networks --- particle swarm optimization --- Casson fluid --- chemical reaction --- cylinder --- heat generation --- magnetohydrodynamic (MHD) --- slip --- Carreau fluid --- Cattaneo–Christov heat flux model --- convective heat boundary condition --- temperature dependent thermal conductivity --- homogeneous-heterogeneous reactions --- integer and non-integer order derivatives --- GO-W/GO-EG nanofluids --- Marangoni convection --- FDE-12 numerical method --- couple stress fluid --- Hafnium particles --- Couette–Poiseuille flow --- shooting method --- magnetic field --- Darcy–Brinkman porous medium --- viscous dissipation --- slip conditions --- porous dissipation --- permeable sheet --- stretchable rotating disk --- CNTs (MWCNTs and SWCNTs) --- velocity slip --- convective boundary condition --- OHAM --- Casson fluid model --- rotating rigid disk --- nanoparticles --- Magnetohydrodynamics (MHD) --- Oil/MWCNT nanofluid --- heat transfer --- finite volume method --- laminar flow --- slip coefficient --- microchannel --- arched surface --- nonlinear thermal radiation --- molecular diameter --- Al2O3 nanoparticles --- streamlines --- isotherms --- RK scheme --- peristaltic transport --- tapered channel --- porous medium --- smart pumping for hemodialysis --- thermal radiation --- compressible viscous flow --- symmetric linear equations --- generalized finite difference scheme --- kernel gradient free --- Lagrangian approach --- Newtonian and non-Newtonian fluids --- nanofluids and particle shape effects --- convective heat and mass transfer --- steady and unsteady flow problems --- multiphase flow simulations --- fractional order differential equations --- thermodynamics --- physiological fluid phenomena in biological systems

Optimization of Heat and Mass Exchange

Authors: --- ---
ISBN: 9783039287420 / 9783039287437 Year: Pages: 182 DOI: 10.3390/books978-3-03928-743-7 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

This Special Issue of Processes operates on the basis of a rigorous peer-review with a single-blind assessment and at least two independent reviewers, thereby ensuring a high quality final product. I would like to thank our reviewers, for providing the authors with constructive comments, and Editorial Board, for their professional advice that led to the final decision. I am sure that, in coming years, readers of this Special Issue will find the scientific manuscripts interesting and beneficial to their research.

Advanced DSP Techniques for High-Capacity and Energy-Efficient Optical Fiber Communications

Authors: ---
ISBN: 9783039217922 9783039217939 Year: Pages: 150 DOI: 10.3390/books978-3-03921-793-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-01-07 09:08:26
License:

Loading...
Export citation

Choose an application

Abstract

The rapid proliferation of the Internet has been driving communication networks closer and closer to their limits, while available bandwidth is disappearing due to an ever-increasing network load. Over the past decade, optical fiber communication technology has increased per fiber data rate from 10 Tb/s to exceeding 10 Pb/s. The major explosion came after the maturity of coherent detection and advanced digital signal processing (DSP). DSP has played a critical role in accommodating channel impairments mitigation, enabling advanced modulation formats for spectral efficiency transmission and realizing flexible bandwidth. This book aims to explore novel, advanced DSP techniques to enable multi-Tb/s/channel optical transmission to address pressing bandwidth and power-efficiency demands. It provides state-of-the-art advances and future perspectives of DSP as well.

Metal Plasticity and Fatigue at High Temperature

Authors: --- ---
ISBN: 9783039287703 / 9783039287710 Year: Pages: 220 DOI: 10.3390/books978-3-03928-771-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

In several industrial fields (such as automotive, steelmaking, aerospace, and fire protection systems) metals need to withstand a combination of cyclic loadings and high temperatures. In this condition, they usually exhibit an amount—more or less pronounced—of plastic deformation, often accompanied by creep or stress-relaxation phenomena. Plastic deformation under the action of cyclic loadings may cause fatigue cracks to appear, eventually leading to failures after a few cycles. In estimating the material strength under such loading conditions, the high-temperature material behavior needs to be considered against cyclic loading and creep, the experimental strength to isothermal/non-isothermal cyclic loadings and, not least of all, the choice and experimental calibration of numerical material models and the selection of the most comprehensive design approach. This book is a series of recent scientific contributions addressing several topics in the field of experimental characterization and physical-based modeling of material behavior and design methods against high-temperature loadings, with emphasis on the correlation between microstructure and strength. Several material types are considered, from stainless steel, aluminum alloys, Ni-based superalloys, spheroidal graphite iron, and copper alloys. The quality of scientific contributions in this book can assist scholars and scientists with their research in the field of metal plasticity, creep, and low-cycle fatigue.

Gas Flows in Microsystems

Authors: ---
ISBN: 9783039215423 9783039215430 Year: Pages: 220 DOI: 10.3390/books978-3-03921-543-0 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General)
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

The last two decades have witnessed a rapid development of microelectromechanical systems (MEMS) involving gas microflows in various technical fields. Gas microflows can, for example, be observed in microheat exchangers designed for chemical applications or for cooling of electronic components, in fluidic microactuators developed for active flow control purposes, in micronozzles used for the micropropulsion of nano and picosats, in microgas chromatographs, analyzers or separators, in vacuum generators and in Knudsen micropumps, as well as in some organs-on-a-chip, such as artificial lungs. These flows are rarefied due to the small MEMS dimensions, and the rarefaction can be increased by low-pressure conditions. The flows relate to the slip flow, transition or free molecular regimes and can involve monatomic or polyatomic gases and gas mixtures. Hydrodynamics and heat and mass transfer are strongly impacted by rarefaction effects, and temperature-driven microflows offer new opportunities for designing original MEMS for gas pumping or separation. Accordingly, this Special Issue seeks to showcase research papers, short communications, and review articles that focus on novel theoretical and numerical models or data, as well as on new experimental results and technics, for improving knowledge on heat and mass transfer in gas microflows. Papers dealing with the development of original gas MEMS are also welcome.

Keywords

pressure drop --- microchannels --- heat sinks --- slip flow --- electronic cooling --- Knudsen pump --- thermally induced flow --- gas mixtures --- direct simulation Monte Carlo (DSMC) --- microfluidic --- rarefied gas flows --- micro-scale flows --- Knudsen layer --- computational fluid dynamics (CFD) --- OpenFOAM --- Micro-Electro-Mechanical Systems (MEMS) --- Nano-Electro-Mechanical Systems (NEMS) --- backward facing step --- gaseous rarefaction effects --- fractal surface topography --- modified Reynolds equation --- aerodynamic effect --- bearing characteristics --- underexpansion --- Fanno flow --- flow choking --- compressibility --- binary gas mixing --- micro-mixer --- DSMC --- splitter --- mixing length --- control mixture composition --- preconcentrator --- microfluidics --- miniaturized gas chromatograph --- BTEX --- PID detector --- ultraviolet light-emitting diode (UV LED) --- spectrophotometry --- UV absorption --- gas sensors --- Benzene, toluene, ethylbenzene and xylene (BTEX) --- toluene --- hollow core waveguides --- capillary tubes --- gas mixing --- pulsed flow --- modular micromixer --- multi-stage micromixer --- modelling --- photoionization detector --- microfluidics --- microfabrication --- volatile organic compound (VOC) detection --- toluene --- supersonic microjets --- Pitot tube --- Knudsen pump --- thermal transpiration --- vacuum micropump --- rarefied gas flow --- kinetic theory --- microfabrication --- photolithography --- microfluidics --- resonant micro-electromechanical-systems (MEMS) --- micro-mirrors --- out-of-plane comb actuation --- fluid damping --- analytical solution --- FE analysis --- miniaturization --- gas flows in micro scale --- measurement and control --- integrated micro sensors --- advanced measurement technologies --- n/a

Listing 1 - 10 of 14 << page
of 2
>>
Sort by