Search results: Found 6

Listing 1 - 6 of 6
Sort by
Marine Tidal and Wave Energy Converters: Technologies, Conversions, Grid Interface, Fault Detection, and Fault-Tolerant Control

Authors: --- ---
ISBN: 9783039282784 9783039282791 Year: Pages: 174 DOI: 10.3390/books978-3-03928-279-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-04-07 23:07:08
License:

Loading...
Export citation

Choose an application

Abstract

The worldwide potential of electric power generation from marine tidal currents, waves, or offshore winds is enormous. The high load factor resulting from the fluid properties and the predictable resource characteristics make tidal and wave energy resources attractive and advantageous for power generation and advantageous when compared to other renewable energies. The technologies are just beginning to reach technical and economic viability to make them potential commercial power sources in the near future. While only a few small projects currently exist, the technology is advancing rapidly and has huge potential for generating bulk power. Moreover, international treaties related to climate control and dwindling fossil fuel resources have encouraged us to harness energy sustainably from such marine renewable sources. Several demonstrative projects have been scheduled to capture tidal and wave energies. A number of these projects have now reached a relatively mature stage and are close to completion. However, very little is known to the academic world about these technologies beyond the basics of their energy conversion principles. While research emphasis is more towards hydrodynamics and turbine design, very limited activities are witnessed in power conversion interface, control, and power quality aspects. Regarding this emerging and promising area of research, this book aims to present recent results, serving to promote successful marine renewable energies integration to the grid or to standalone microgrids.

Permanent Magnet Synchronous Machines

Author:
ISBN: 9783039213504 9783039213511 Year: Pages: 282 DOI: 10.3390/books978-3-03921-351-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Interest in permanent magnet synchronous machines (PMSMs) is continuously increasing worldwide, especially with the increased use of renewable energy and the electrification of transports. This book contains the successful submissions of fifteen papers to a Special Issue of Energies on the subject area of “Permanent Magnet Synchronous Machines”. The focus is on permanent magnet synchronous machines and the electrical systems they are connected to. The presented work represents a wide range of areas. Studies of control systems, both for permanent magnet synchronous machines and for brushless DC motors, are presented and experimentally verified. Design studies of generators for wind power, wave power and hydro power are presented. Finite element method simulations and analytical design methods are used. The presented studies represent several of the different research fields on permanent magnet machines and electric drives.

Keywords

PMSM (permanent magnet synchronous motor) --- DB-DTFC (deadbeat-direct torque and flux control) --- torque control --- stability --- permanent-magnet machine --- brushless machine --- Vernier machine --- flux switching machine --- multiphase machine --- outer rotor --- electric vehicle --- interior permanent magnet synchronous machines --- magnetic reluctance network --- brushless dc motor --- phase-advanced method --- winding inductance --- sub-fractional slot-concentrated winding --- field weakening --- periodic timer interrupt --- Brushless DC motors --- current ripples --- current spikes --- modeling --- back electromotive force --- R-C filter --- cogging torque --- permanent magnet synchronous generator --- small wind turbines --- finite element method --- renewable energy --- energy conversion --- finite element analysis --- pulse width modulation --- permanent magnet synchronous generator --- wind generator --- MPC --- PMSM --- vector control --- speed tracking --- brushless DC (BLDC) motor --- sensorless motor --- commutation error compensation --- free-wheeling period --- permanent magnet synchronous motor (PMSM) --- sliding mode observer (SMO) --- parameter perturbation --- predictive current control (PCC) --- digital simulation --- motor drives --- interior permanent-magnet machines --- finite-element analysis --- modeling --- automotive applications --- electric vehicle (EV) --- hybrid electric vehicle (HEV) --- mathematical model --- saturation --- coils --- design tools --- energy efficiency --- linear generator --- power control --- stator --- wave power --- permanent magnet synchronous generator --- electrical machine design --- permanent magnet material --- bulk electric system --- condition monitoring --- electrical signature analysis --- fault diagnosis --- predictive maintenance --- synchronous generator --- permanent magnet synchronous machine (PMSM) --- flying start --- sensorless control --- permanent magnet synchronous generator --- permanent magnet synchronous motor --- electric propulsion systems --- renewable energy --- energy conversion

Control and Nonlinear Dynamics on Energy Conversion Systems

Authors: ---
ISBN: 9783039211104 9783039211111 Year: Pages: 438 DOI: 10.3390/books978-3-03921-111-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

The ever-increasing need for higher efficiency, smaller size, and lower cost make the analysis, understanding, and design of energy conversion systems extremely important, interesting, and even imperative. One of the most neglected features in the study of such systems is the effect of the inherent nonlinearities on the stability of the system. Due to these nonlinearities, these devices may exhibit undesirable and complex dynamics, which are the focus of many researchers. Even though a lot of research has taken place in this area during the last 20 years, it is still an active research topic for mainstream power engineers. This research has demonstrated that these systems can become unstable with a direct result in increased losses, extra subharmonics, and even uncontrollability/unobservability. The detailed study of these systems can help in the design of smaller, lighter, and less expensive converters that are particularly important in emerging areas of research like electric vehicles, smart grids, renewable energy sources, and others. The aim of this Special Issue is to cover control and nonlinear aspects of instabilities in different energy conversion systems: theoretical, analysis modelling, and practical solutions for such emerging applications. In this Special Issue, we present novel research works in different areas of the control and nonlinear dynamics of energy conversion systems.

Keywords

data-driven --- prediction --- neural network --- air-handling unit (AHU) --- supply air temperature --- pulverizing system --- soft sensor --- inferential control --- moving horizon estimation --- multi-model predictive control --- micro-grid --- droop control --- virtual impedance --- harmonic suppression --- power quality --- combined heat and power unit --- two-stage bypass --- dynamic model --- coordinated control system --- predictive control --- decoupling control --- power conversion --- model–plant mismatches --- disturbance observer --- performance recovery --- offset-free --- electrical machine --- electromagnetic vibration --- multiphysics --- rotor dynamics --- air gap eccentricity --- calculation method --- magnetic saturation --- corrugated pipe --- whistling noise --- Helmholtz number --- excited modes --- switched reluctance generator --- capacitance current pulse train control --- voltage ripple --- capacitance current --- feedback coefficient --- distributed architecture --- maximum power point tracking --- sliding mode control --- overvoltage --- permanent magnet synchronous motor (PMSM) --- single artificial neuron goal representation heuristic dynamic programming (SAN-GrHDP) --- single artificial neuron (SAN) --- reinforcement learning (RL) --- goal representation heuristic dynamic programming (GrHDP) --- adaptive dynamic programming (ADP) --- sliding mode observer (SMO) --- permanent magnet synchronous motor (PMSM) --- extended back electromotive force (EEMF) --- position sensorless --- bridgeless converter --- discontinuous conduction mode (DCM) --- high step-up voltage gain --- power factor correction (PFC) --- space mechanism --- multi-clearance --- nonlinear dynamic model --- planetary gears --- vibration characteristics --- new step-up converter --- ultrahigh voltage conversion ratio --- small-signal model --- average-current mode control --- slope compensation --- monodromy matrix --- current mode control --- boost-flyback converter --- explosion-magnetic generator --- plasma accelerator --- current-pulse formation --- DC-DC buck converter --- contraction analysis --- global stability --- matrix norm --- DC micro grid --- efficiency optimization --- variable bus voltage MG --- variable switching frequency DC-DC converters --- centralized vs. decentralized control --- local vs. global optimization --- buck converter --- DC motor --- bifurcations in control parameter --- sliding control --- zero average dynamics --- fixed-point inducting control --- DC-DC converters --- quadratic boost --- maximum power point tracking (MPPT) --- nonlinear dynamics --- subharmonic oscillations --- photovoltaic (PV) --- steel catenary riser --- rigid body rotation --- wave --- the load of suspension point in the z direction --- Cable3D

Advanced Mobile Robotics: Volume 1

Author:
ISBN: 9783039219162 9783039219179 Year: Pages: 468 DOI: 10.3390/books978-3-03921-917-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering --- Technology (General)
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

Mobile robotics is a challenging field with great potential. It covers disciplines including electrical engineering, mechanical engineering, computer science, cognitive science, and social science. It is essential to the design of automated robots, in combination with artificial intelligence, vision, and sensor technologies. Mobile robots are widely used for surveillance, guidance, transportation and entertainment tasks, as well as medical applications. This Special Issue intends to concentrate on recent developments concerning mobile robots and the research surrounding them to enhance studies on the fundamental problems observed in the robots. Various multidisciplinary approaches and integrative contributions including navigation, learning and adaptation, networked system, biologically inspired robots and cognitive methods are welcome contributions to this Special Issue, both from a research and an application perspective.

Keywords

path planning --- lane change --- excellent driver model --- neural networks --- autonomous vehicle --- remotely operated vehicle --- ocean current --- cable disturbance modeling --- lumped parameter method --- sliding mode observer --- 4WS4WD vehicle --- force control --- MPC --- PSO --- path tracking --- negative-buoyancy --- tri-tilt-rotor --- autonomous underwater vehicle (AUV) --- immersion and invariance --- object mapping --- Geometric Algebra --- Differential Evolution --- non-inertial reference frame --- centrifugal force --- turning model LIP --- trajectory planning --- space robot --- hybrid bionic robot --- chameleon --- end effector --- hybrid robot --- curve fitting --- fair optimisation --- trajectory interpolation --- piezoelectric actuator --- high step-up ratio --- high efficiency --- small size --- micro mobile robot --- biomimetic robot --- micro air vehicle --- flapping --- drag-based system --- dragonfly --- snake-like robot --- singularity analysis --- system design --- dynamical model --- nonlinear differentiator --- robotic drilling --- sliding mode control --- drilling end-effector --- fault diagnosis --- quadcopter UAV --- fault-tolerant control --- sliding mode observer --- Thau observer --- smart materials --- actuators --- robots --- electro-rheological fluids --- magneto-rheological fluids --- shape memory alloys --- medical devices --- rehabilitation system --- LOS --- motion camouflage control --- parallel navigation --- missile control system --- target tracking --- variable speed --- high-speed target --- snake robots --- head-raising --- shape-fitting --- phase-shifting --- spiral curve --- servo valve --- pneumatics --- position control --- cart --- robot --- step climbing --- transportation --- stopper --- climbing robot --- safety recovery mechanism --- cable detection --- dynamic coupling analysis --- path planning --- mobile robots --- curvature constraints --- state constraints --- extend procedure --- G3-continuity --- car-like kinematics --- obstacle avoidance system --- harmonic potential field --- curvature constraint --- non-holonomic mobile robot --- computing time --- inverse kinematics --- joint limit avoidance --- kinematic singularity --- manipulator --- obstacle avoidance --- potential field --- service robot --- graph representation --- similarity measure --- mobile robot --- static environments --- path planning --- multi-objective optimization --- NSGA-II --- evolutionary operators --- mobile robot --- coalmine --- exploration --- robotics --- ATEX --- safety --- methane --- quadruped robot --- stability criterion --- dynamic gait --- glass façade cleaning robot --- wall climbing robot --- biped mechanism --- data association --- 3D-SLAM --- localization --- mapping --- disturbance-rejection control --- extended state observer (ESO) --- hover mode --- transition mode --- negative buoyancy --- quad-tilt rotor --- autonomous underwater vehicle (AUV) --- Rodrigues parameters --- UAV --- variable spray --- prescription map translation --- PID algorithm --- grip planning --- biped climbing robots --- collision avoidance --- grip optimization --- dynamic environment --- closed-loop detection --- sparse pose adjustment (SPA) --- inertial measurement unit (IMU) --- simultaneous localization and mapping (SLAM) --- non-singular fast-terminal sliding-mode control --- industrial robotic manipulator --- external disturbance --- dynamic uncertainty --- adaptive control law --- exoskeleton --- load carriage --- muscle activities --- human–robot interaction --- discomfort --- actuatorless --- alpine ski --- human–robot interaction --- mechanism --- passive skiing turn --- skiing robot --- predictable trajectory planning --- geodesic --- constrained motion --- mobile robot --- jumping robot --- hopping robot --- continuous hopping --- single actuator --- self-reconfigurable robot --- cleaning robot --- Tetris-inspired --- polyomino tiling theory --- coverage path planning --- area decomposition --- multi-criteria decision making --- design and modeling --- kinematics --- kinematic identification --- monocular vision --- action generation --- robot motion --- undiscovered sensor values --- differential wheeled robot --- powered exoskeleton --- motion sensor --- machine learning --- unmanned aerial vehicle --- pesticide application --- deposition uniformity --- droplets penetrability --- control efficacy --- working efficiency --- subgoal graphs --- reinforcement learning --- hierarchical path planning --- uncertain environments --- mobile robots --- deep reinforcement learning --- mobile manipulation --- robot learning --- intelligent mobile robot --- pallet transportation --- master-slave --- compact driving unit --- high-gain observer --- snake robot --- series elastic actuator --- SEA --- Robot Operating System --- ROS --- non-prehensile manipulation --- manipulation planning --- contact planning --- manipulation action sequences --- robot --- obstacle avoidance --- facial and gender recognition --- q-learning --- Q-networks --- reinforcement learning --- gait cycle --- biped robots --- minimally invasive surgery robot --- inverse kinematics --- dialytic elimination --- Newton iteration --- curvilinear obstacle --- douglas–peuker polygonal approximation --- opposite angle-based exact cell decomposition --- path planning --- mobile robot --- UAV --- auto-tuning --- machine learning --- iterative learning --- extremum-seeking --- altitude controller --- enemy avoidance --- reinforcement learning --- decision making --- hardware-in-the-loop simulation --- unmanned aerial vehicles --- path planning --- multiple mobile robots --- artificial fish swarm algorithm --- expansion logic strategy --- sample gathering problem --- mobile robots --- mathematical modeling --- numerical evaluation --- centralized architecture --- optimization --- fault recovery --- reinforcement learning --- gait adaptation --- legged robot --- bio-inspired robot --- human–machine interactive navigation --- mobile robot --- topological map --- regional growth --- trajectory planning --- position/force cooperative control --- hierarchical planning --- object-oriented --- symmetrical adaptive variable impedance --- biologically-inspired --- self-learning --- formation control --- mobile robots --- loop closure detection --- convolutional neural network --- spatial pyramid pooling --- dynamic neural networks --- mobile robot navigation --- gesture recognition --- behaviour dynamics --- real-time action recognition --- formation of robots --- non-holonomic robot --- stability analysis --- Lyapunov-like function --- target assignment --- goal exchange --- path following --- switching control --- swarm-robotics --- rendezvous consensus --- robot navigation --- victim-detection --- unmanned surface vessel --- path following --- integral line-of-sight --- finite-time currents observer --- radial basis function neural networks --- input saturation --- n/a

Advanced Mobile Robotics: Volume 2

Author:
ISBN: 9783039219445 9783039219452 Year: Pages: 498 DOI: 10.3390/books978-3-03921-945-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering --- Technology (General)
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

Mobile robotics is a challenging field with great potential. It covers disciplines including electrical engineering, mechanical engineering, computer science, cognitive science, and social science. It is essential to the design of automated robots, in combination with artificial intelligence, vision, and sensor technologies. Mobile robots are widely used for surveillance, guidance, transportation and entertainment tasks, as well as medical applications. This Special Issue intends to concentrate on recent developments concerning mobile robots and the research surrounding them to enhance studies on the fundamental problems observed in the robots. Various multidisciplinary approaches and integrative contributions including navigation, learning and adaptation, networked system, biologically inspired robots and cognitive methods are welcome contributions to this Special Issue, both from a research and an application perspective.

Keywords

path planning --- lane change --- excellent driver model --- neural networks --- autonomous vehicle --- remotely operated vehicle --- ocean current --- cable disturbance modeling --- lumped parameter method --- sliding mode observer --- 4WS4WD vehicle --- force control --- MPC --- PSO --- path tracking --- negative-buoyancy --- tri-tilt-rotor --- autonomous underwater vehicle (AUV) --- immersion and invariance --- object mapping --- Geometric Algebra --- Differential Evolution --- non-inertial reference frame --- centrifugal force --- turning model LIP --- trajectory planning --- space robot --- hybrid bionic robot --- chameleon --- end effector --- hybrid robot --- curve fitting --- fair optimisation --- trajectory interpolation --- piezoelectric actuator --- high step-up ratio --- high efficiency --- small size --- micro mobile robot --- biomimetic robot --- micro air vehicle --- flapping --- drag-based system --- dragonfly --- snake-like robot --- singularity analysis --- system design --- dynamical model --- nonlinear differentiator --- robotic drilling --- sliding mode control --- drilling end-effector --- fault diagnosis --- quadcopter UAV --- fault-tolerant control --- sliding mode observer --- Thau observer --- smart materials --- actuators --- robots --- electro-rheological fluids --- magneto-rheological fluids --- shape memory alloys --- medical devices --- rehabilitation system --- LOS --- motion camouflage control --- parallel navigation --- missile control system --- target tracking --- variable speed --- high-speed target --- snake robots --- head-raising --- shape-fitting --- phase-shifting --- spiral curve --- servo valve --- pneumatics --- position control --- cart --- robot --- step climbing --- transportation --- stopper --- climbing robot --- safety recovery mechanism --- cable detection --- dynamic coupling analysis --- path planning --- mobile robots --- curvature constraints --- state constraints --- extend procedure --- G3-continuity --- car-like kinematics --- obstacle avoidance system --- harmonic potential field --- curvature constraint --- non-holonomic mobile robot --- computing time --- inverse kinematics --- joint limit avoidance --- kinematic singularity --- manipulator --- obstacle avoidance --- potential field --- service robot --- graph representation --- similarity measure --- mobile robot --- static environments --- path planning --- multi-objective optimization --- NSGA-II --- evolutionary operators --- mobile robot --- coalmine --- exploration --- robotics --- ATEX --- safety --- methane --- quadruped robot --- stability criterion --- dynamic gait --- glass façade cleaning robot --- wall climbing robot --- biped mechanism --- data association --- 3D-SLAM --- localization --- mapping --- disturbance-rejection control --- extended state observer (ESO) --- hover mode --- transition mode --- negative buoyancy --- quad-tilt rotor --- autonomous underwater vehicle (AUV) --- Rodrigues parameters --- UAV --- variable spray --- prescription map translation --- PID algorithm --- grip planning --- biped climbing robots --- collision avoidance --- grip optimization --- dynamic environment --- closed-loop detection --- sparse pose adjustment (SPA) --- inertial measurement unit (IMU) --- simultaneous localization and mapping (SLAM) --- non-singular fast-terminal sliding-mode control --- industrial robotic manipulator --- external disturbance --- dynamic uncertainty --- adaptive control law --- exoskeleton --- load carriage --- muscle activities --- human–robot interaction --- discomfort --- actuatorless --- alpine ski --- human–robot interaction --- mechanism --- passive skiing turn --- skiing robot --- predictable trajectory planning --- geodesic --- constrained motion --- mobile robot --- jumping robot --- hopping robot --- continuous hopping --- single actuator --- self-reconfigurable robot --- cleaning robot --- Tetris-inspired --- polyomino tiling theory --- coverage path planning --- area decomposition --- multi-criteria decision making --- design and modeling --- kinematics --- kinematic identification --- monocular vision --- action generation --- robot motion --- undiscovered sensor values --- differential wheeled robot --- powered exoskeleton --- motion sensor --- machine learning --- unmanned aerial vehicle --- pesticide application --- deposition uniformity --- droplets penetrability --- control efficacy --- working efficiency --- subgoal graphs --- reinforcement learning --- hierarchical path planning --- uncertain environments --- mobile robots --- deep reinforcement learning --- mobile manipulation --- robot learning --- intelligent mobile robot --- pallet transportation --- master-slave --- compact driving unit --- high-gain observer --- snake robot --- series elastic actuator --- SEA --- Robot Operating System --- ROS --- non-prehensile manipulation --- manipulation planning --- contact planning --- manipulation action sequences --- robot --- obstacle avoidance --- facial and gender recognition --- q-learning --- Q-networks --- reinforcement learning --- gait cycle --- biped robots --- minimally invasive surgery robot --- inverse kinematics --- dialytic elimination --- Newton iteration --- curvilinear obstacle --- douglas–peuker polygonal approximation --- opposite angle-based exact cell decomposition --- path planning --- mobile robot --- UAV --- auto-tuning --- machine learning --- iterative learning --- extremum-seeking --- altitude controller --- enemy avoidance --- reinforcement learning --- decision making --- hardware-in-the-loop simulation --- unmanned aerial vehicles --- path planning --- multiple mobile robots --- artificial fish swarm algorithm --- expansion logic strategy --- sample gathering problem --- mobile robots --- mathematical modeling --- numerical evaluation --- centralized architecture --- optimization --- fault recovery --- reinforcement learning --- gait adaptation --- legged robot --- bio-inspired robot --- human–machine interactive navigation --- mobile robot --- topological map --- regional growth --- trajectory planning --- position/force cooperative control --- hierarchical planning --- object-oriented --- symmetrical adaptive variable impedance --- biologically-inspired --- self-learning --- formation control --- mobile robots --- loop closure detection --- convolutional neural network --- spatial pyramid pooling --- dynamic neural networks --- mobile robot navigation --- gesture recognition --- behaviour dynamics --- real-time action recognition --- formation of robots --- non-holonomic robot --- stability analysis --- Lyapunov-like function --- target assignment --- goal exchange --- path following --- switching control --- swarm-robotics --- rendezvous consensus --- robot navigation --- victim-detection --- unmanned surface vessel --- path following --- integral line-of-sight --- finite-time currents observer --- radial basis function neural networks --- input saturation --- n/a

Advanced Mobile Robotics: Volume 3

Author:
ISBN: 9783039219469 9783039219476 Year: Pages: 270 DOI: 10.3390/books978-3-03921-947-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering --- Technology (General)
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

Mobile robotics is a challenging field with great potential. It covers disciplines including electrical engineering, mechanical engineering, computer science, cognitive science, and social science. It is essential to the design of automated robots, in combination with artificial intelligence, vision, and sensor technologies. Mobile robots are widely used for surveillance, guidance, transportation and entertainment tasks, as well as medical applications. This Special Issue intends to concentrate on recent developments concerning mobile robots and the research surrounding them to enhance studies on the fundamental problems observed in the robots. Various multidisciplinary approaches and integrative contributions including navigation, learning and adaptation, networked system, biologically inspired robots and cognitive methods are welcome contributions to this Special Issue, both from a research and an application perspective.

Keywords

path planning --- lane change --- excellent driver model --- neural networks --- autonomous vehicle --- remotely operated vehicle --- ocean current --- cable disturbance modeling --- lumped parameter method --- sliding mode observer --- 4WS4WD vehicle --- force control --- MPC --- PSO --- path tracking --- negative-buoyancy --- tri-tilt-rotor --- autonomous underwater vehicle (AUV) --- immersion and invariance --- object mapping --- Geometric Algebra --- Differential Evolution --- non-inertial reference frame --- centrifugal force --- turning model LIP --- trajectory planning --- space robot --- hybrid bionic robot --- chameleon --- end effector --- hybrid robot --- curve fitting --- fair optimisation --- trajectory interpolation --- piezoelectric actuator --- high step-up ratio --- high efficiency --- small size --- micro mobile robot --- biomimetic robot --- micro air vehicle --- flapping --- drag-based system --- dragonfly --- snake-like robot --- singularity analysis --- system design --- dynamical model --- nonlinear differentiator --- robotic drilling --- sliding mode control --- drilling end-effector --- fault diagnosis --- quadcopter UAV --- fault-tolerant control --- sliding mode observer --- Thau observer --- smart materials --- actuators --- robots --- electro-rheological fluids --- magneto-rheological fluids --- shape memory alloys --- medical devices --- rehabilitation system --- LOS --- motion camouflage control --- parallel navigation --- missile control system --- target tracking --- variable speed --- high-speed target --- snake robots --- head-raising --- shape-fitting --- phase-shifting --- spiral curve --- servo valve --- pneumatics --- position control --- cart --- robot --- step climbing --- transportation --- stopper --- climbing robot --- safety recovery mechanism --- cable detection --- dynamic coupling analysis --- path planning --- mobile robots --- curvature constraints --- state constraints --- extend procedure --- G3-continuity --- car-like kinematics --- obstacle avoidance system --- harmonic potential field --- curvature constraint --- non-holonomic mobile robot --- computing time --- inverse kinematics --- joint limit avoidance --- kinematic singularity --- manipulator --- obstacle avoidance --- potential field --- service robot --- graph representation --- similarity measure --- mobile robot --- static environments --- path planning --- multi-objective optimization --- NSGA-II --- evolutionary operators --- mobile robot --- coalmine --- exploration --- robotics --- ATEX --- safety --- methane --- quadruped robot --- stability criterion --- dynamic gait --- glass façade cleaning robot --- wall climbing robot --- biped mechanism --- data association --- 3D-SLAM --- localization --- mapping --- disturbance-rejection control --- extended state observer (ESO) --- hover mode --- transition mode --- negative buoyancy --- quad-tilt rotor --- autonomous underwater vehicle (AUV) --- Rodrigues parameters --- UAV --- variable spray --- prescription map translation --- PID algorithm --- grip planning --- biped climbing robots --- collision avoidance --- grip optimization --- dynamic environment --- closed-loop detection --- sparse pose adjustment (SPA) --- inertial measurement unit (IMU) --- simultaneous localization and mapping (SLAM) --- non-singular fast-terminal sliding-mode control --- industrial robotic manipulator --- external disturbance --- dynamic uncertainty --- adaptive control law --- exoskeleton --- load carriage --- muscle activities --- human–robot interaction --- discomfort --- actuatorless --- alpine ski --- human–robot interaction --- mechanism --- passive skiing turn --- skiing robot --- predictable trajectory planning --- geodesic --- constrained motion --- mobile robot --- jumping robot --- hopping robot --- continuous hopping --- single actuator --- self-reconfigurable robot --- cleaning robot --- Tetris-inspired --- polyomino tiling theory --- coverage path planning --- area decomposition --- multi-criteria decision making --- design and modeling --- kinematics --- kinematic identification --- monocular vision --- action generation --- robot motion --- undiscovered sensor values --- differential wheeled robot --- powered exoskeleton --- motion sensor --- machine learning --- unmanned aerial vehicle --- pesticide application --- deposition uniformity --- droplets penetrability --- control efficacy --- working efficiency --- subgoal graphs --- reinforcement learning --- hierarchical path planning --- uncertain environments --- mobile robots --- deep reinforcement learning --- mobile manipulation --- robot learning --- intelligent mobile robot --- pallet transportation --- master-slave --- compact driving unit --- high-gain observer --- snake robot --- series elastic actuator --- SEA --- Robot Operating System --- ROS --- non-prehensile manipulation --- manipulation planning --- contact planning --- manipulation action sequences --- robot --- obstacle avoidance --- facial and gender recognition --- q-learning --- Q-networks --- reinforcement learning --- gait cycle --- biped robots --- minimally invasive surgery robot --- inverse kinematics --- dialytic elimination --- Newton iteration --- curvilinear obstacle --- douglas–peuker polygonal approximation --- opposite angle-based exact cell decomposition --- path planning --- mobile robot --- UAV --- auto-tuning --- machine learning --- iterative learning --- extremum-seeking --- altitude controller --- enemy avoidance --- reinforcement learning --- decision making --- hardware-in-the-loop simulation --- unmanned aerial vehicles --- path planning --- multiple mobile robots --- artificial fish swarm algorithm --- expansion logic strategy --- sample gathering problem --- mobile robots --- mathematical modeling --- numerical evaluation --- centralized architecture --- optimization --- fault recovery --- reinforcement learning --- gait adaptation --- legged robot --- bio-inspired robot --- human–machine interactive navigation --- mobile robot --- topological map --- regional growth --- trajectory planning --- position/force cooperative control --- hierarchical planning --- object-oriented --- symmetrical adaptive variable impedance --- biologically-inspired --- self-learning --- formation control --- mobile robots --- loop closure detection --- convolutional neural network --- spatial pyramid pooling --- dynamic neural networks --- mobile robot navigation --- gesture recognition --- behaviour dynamics --- real-time action recognition --- formation of robots --- non-holonomic robot --- stability analysis --- Lyapunov-like function --- target assignment --- goal exchange --- path following --- switching control --- swarm-robotics --- rendezvous consensus --- robot navigation --- victim-detection --- unmanned surface vessel --- path following --- integral line-of-sight --- finite-time currents observer --- radial basis function neural networks --- input saturation --- n/a

Listing 1 - 6 of 6
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (6)


License

CC by-nc-nd (6)


Language

english (6)


Year
From To Submit

2020 (4)

2019 (2)