Search results: Found 15

Listing 1 - 10 of 15 << page
of 2
>>
Sort by
Control of Multiphase Machines and Drives

Authors: ---
ISBN: 9783039281367 9783039281374 Year: Pages: 146 DOI: 10.3390/books978-3-03928-137-4 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-01-30 16:39:46
License:

Loading...
Export citation

Choose an application

Abstract

With the growing interest in electrical machines in recent times, the multiphase machine field has developed into a fascinating research area. Their intrinsic features (power splitting, better fault tolerance, or lower torque ripple) make them an appealing competitor to conventional three-phase machines. Multiphase electric drives have been recently used in applications where fault tolerance and continuous operation of the drive are required. However, the difficulties in extending the three-phase conventional current regulation and control structure to multiphase systems still limit their broad applicability in industry solutions. The main objective of this book is to illustrate new advances, developments, and applications in the field of multiphase machines and drives, while exposing these advances, developments, and applications to the scientific community and industry.

Autonomous Control of Unmanned Aerial Vehicles

Author:
ISBN: 9783039210305 9783039210312 Year: Pages: 270 DOI: 10.3390/books978-3-03921-031-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Unmanned aerial vehicles (UAVs) are being increasingly used in different applications in both military and civilian domains. These applications include surveillance, reconnaissance, remote sensing, target acquisition, border patrol, infrastructure monitoring, aerial imaging, industrial inspection, and emergency medical aid. Vehicles that can be considered autonomous must be able to make decisions and react to events without direct intervention by humans. Although some UAVs are able to perform increasingly complex autonomous manoeuvres, most UAVs are not fully autonomous; instead, they are mostly operated remotely by humans. To make UAVs fully autonomous, many technological and algorithmic developments are still required. For instance, UAVs will need to improve their sensing of obstacles and subsequent avoidance. This becomes particularly important as autonomous UAVs start to operate in civilian airspaces that are occupied by other aircraft. The aim of this volume is to bring together the work of leading researchers and practitioners in the field of unmanned aerial vehicles with a common interest in their autonomy. The contributions that are part of this volume present key challenges associated with the autonomous control of unmanned aerial vehicles, and propose solution methodologies to address such challenges, analyse the proposed methodologies, and evaluate their performance.

Power Quality in Microgrids Based on Distributed Generators

Authors: ---
ISBN: 9783039280063 9783039280070 Year: Pages: 194 DOI: 10.3390/books978-3-03928-007-0 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-01-07 09:08:26
License:

Loading...
Export citation

Choose an application

Abstract

This book comprises ten articles covering different aspects of power quality issues in microgrids and distributed generation (DG) systems, including 1) Detection and estimation of power quality; 2) Modeling; 3) Harmonic control for DG systems and microgrids; 4) Stability improvements for microgrids. Different power quality phenomena and solution were studied in the included papers, such as harmonics, resonance, frequency deviation, voltage sag, and fluctuation. From a network point of view, some papers studied the harmonic and stability issues in standalone microgrids which are more likely to cause power quality problems. Other papers discussed the power quality problems in microgrids which are weakly interconnected with the main distribution grid. In view of the published papers, there is a trend that increasingly advanced modeling, analysis, and control schemes were applied in the studies. Moreover, the latest works focus not only on single-unit problems but also multiple units or network issues. Although some of the hot topics are not included, this book covers multiple aspects of the current power quality research frontier, and represents a particularly useful reference book for frontier researchers in this field.

Advances in Mechanical Systems Dynamics

Authors: --- ---
ISBN: 9783039281886 9783039281893 Year: Pages: 236 DOI: 10.3390/books978-3-03928-189-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Mechanical Engineering --- General and Civil Engineering --- Technology (General)
Added to DOAB on : 2020-04-07 23:07:08
License:

Loading...
Export citation

Choose an application

Abstract

Modern dynamics was established many centuries ago by Galileo and Newton before the beginning of the industrial era. Presently, we are in the presence of the fourth industrial revolution, and mechanical systems are increasingly being integrated with electronic, electrical, and fluidic systems. This trend is present not only in the industrial environment, which will soon be characterized by the cyber-physical systems of industry 4.0, but also in other environments like mobility, health and bio-engineering, food and natural resources, safety, and sustainable living. In this context, purely mechanical systems with quasi-static behavior will become less common and the state-of-the-art will soon be represented by integrated mechanical systems, which need accurate dynamic models to predict their behavior. Therefore, mechanical system dynamics are going to play an increasingly central role. Significant research efforts are needed to improve the identification of the mechanical properties of systems in order to develop models that take non-linearity into account, and to develop efficient simulation tools. This Special Issue aims at disseminating the latest research achievements, findings, and ideas in mechanical systems dynamics, with particular emphasis on applications that are strongly integrated with other systems and require a multi-physical approach.

Intelligent Marine Robotics Modelling, Simulation and Applications

Authors: ---
ISBN: 9783039281329 / 9783039281336 Year: Pages: 242 DOI: 10.3390/books978-3-03928-133-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Pathology
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

The biennial Congress of the Italian Society of Oral Pathology and Medicine (SIPMO) is an International meeting dedicated to the growing diagnostic challenges in the oral pathology and medicine field. The III International and XV National edition will be a chance to discuss clinical conditions which are unusual, rare, or difficult to define. Many consolidated national and international research groups will be involved in the debate and discussion through special guest lecturers, academic dissertations, single clinical case presentations, posters, and degree thesis discussions. The SIPMO Congress took place from the 17th to the 19th of October 2019 in Bari (Italy), and the enclosed copy of Proceedings is a non-exhaustive collection of abstracts from the SIPMO 2019 contributions.

Control and Nonlinear Dynamics on Energy Conversion Systems

Authors: ---
ISBN: 9783039211104 9783039211111 Year: Pages: 438 DOI: 10.3390/books978-3-03921-111-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

The ever-increasing need for higher efficiency, smaller size, and lower cost make the analysis, understanding, and design of energy conversion systems extremely important, interesting, and even imperative. One of the most neglected features in the study of such systems is the effect of the inherent nonlinearities on the stability of the system. Due to these nonlinearities, these devices may exhibit undesirable and complex dynamics, which are the focus of many researchers. Even though a lot of research has taken place in this area during the last 20 years, it is still an active research topic for mainstream power engineers. This research has demonstrated that these systems can become unstable with a direct result in increased losses, extra subharmonics, and even uncontrollability/unobservability. The detailed study of these systems can help in the design of smaller, lighter, and less expensive converters that are particularly important in emerging areas of research like electric vehicles, smart grids, renewable energy sources, and others. The aim of this Special Issue is to cover control and nonlinear aspects of instabilities in different energy conversion systems: theoretical, analysis modelling, and practical solutions for such emerging applications. In this Special Issue, we present novel research works in different areas of the control and nonlinear dynamics of energy conversion systems.

Keywords

data-driven --- prediction --- neural network --- air-handling unit (AHU) --- supply air temperature --- pulverizing system --- soft sensor --- inferential control --- moving horizon estimation --- multi-model predictive control --- micro-grid --- droop control --- virtual impedance --- harmonic suppression --- power quality --- combined heat and power unit --- two-stage bypass --- dynamic model --- coordinated control system --- predictive control --- decoupling control --- power conversion --- model–plant mismatches --- disturbance observer --- performance recovery --- offset-free --- electrical machine --- electromagnetic vibration --- multiphysics --- rotor dynamics --- air gap eccentricity --- calculation method --- magnetic saturation --- corrugated pipe --- whistling noise --- Helmholtz number --- excited modes --- switched reluctance generator --- capacitance current pulse train control --- voltage ripple --- capacitance current --- feedback coefficient --- distributed architecture --- maximum power point tracking --- sliding mode control --- overvoltage --- permanent magnet synchronous motor (PMSM) --- single artificial neuron goal representation heuristic dynamic programming (SAN-GrHDP) --- single artificial neuron (SAN) --- reinforcement learning (RL) --- goal representation heuristic dynamic programming (GrHDP) --- adaptive dynamic programming (ADP) --- sliding mode observer (SMO) --- permanent magnet synchronous motor (PMSM) --- extended back electromotive force (EEMF) --- position sensorless --- bridgeless converter --- discontinuous conduction mode (DCM) --- high step-up voltage gain --- power factor correction (PFC) --- space mechanism --- multi-clearance --- nonlinear dynamic model --- planetary gears --- vibration characteristics --- new step-up converter --- ultrahigh voltage conversion ratio --- small-signal model --- average-current mode control --- slope compensation --- monodromy matrix --- current mode control --- boost-flyback converter --- explosion-magnetic generator --- plasma accelerator --- current-pulse formation --- DC-DC buck converter --- contraction analysis --- global stability --- matrix norm --- DC micro grid --- efficiency optimization --- variable bus voltage MG --- variable switching frequency DC-DC converters --- centralized vs. decentralized control --- local vs. global optimization --- buck converter --- DC motor --- bifurcations in control parameter --- sliding control --- zero average dynamics --- fixed-point inducting control --- DC-DC converters --- quadratic boost --- maximum power point tracking (MPPT) --- nonlinear dynamics --- subharmonic oscillations --- photovoltaic (PV) --- steel catenary riser --- rigid body rotation --- wave --- the load of suspension point in the z direction --- Cable3D

Microgrids

Author:
ISBN: 9783039218684 9783039218691 Year: Pages: 108 DOI: 10.3390/books978-3-03921-869-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering --- Technology (General)
Added to DOAB on : 2020-01-30 16:39:46
License:

Loading...
Export citation

Choose an application

Abstract

Electrical power systems are evolving at the generation, transmission, and distribution levels. At distribution level, small generating and storage units—the so-called distributed energy sources (DERs)—are being installed close to consumption sites. The expansion of DERs is empowering renewable energy source integration and, as a consequence, new actors are appearing in electrical systems. Among them, the prosumer is a game-changer; the fruit of the behavior transformation of the consumer who has not only the ability to consume power but also to produce it. Microgrids can be understood as DER installations that have the capability of both grid-connected and grid-isolated operation. During the last decades, there has been a significant deployment of microgrids (e.g., in countries like the United States, Switzerland, and Denmark) and a consequent increase in renewable energy generation. This is contributing to the decarbonization of electrical power systems. However, the variability and intermittency of renewable sources introduce uncertainty, which implies a more complex operation and control. Taking into account that existing and future planned microgrids are being/going to be interconnected to the current electrical network, challenges in terms of design, operation, and control at power system level need to be addressed, considering existing regulations.

Keywords

demand-side management --- optimization --- deterministic optimization --- stochastic optimization --- residential users --- devices scheduling --- renewable sources --- storage systems --- electric energy market --- power quality --- chaos synchronization detection --- extension theory --- direct search method (DSM) --- microgrid (MG) --- distributed energy resources (DERs) --- distributed generation (DG) --- optimal dispatch --- microgrids --- multi-agent --- coordinated control --- IEC 61850 Standard --- generic object oriented substation event (GOOSE) communication --- power quality disturbances --- S-transform --- multiresolution --- particle swarm optimization --- decision tree --- reliability evaluation --- microgrid --- distributed generation --- battery storage --- vehicle-to-grid --- ruleless EV --- regular EV --- combined power generation system --- microgrid --- coordinative optimization of energy --- predictive control --- genetic algorithm --- distributed generation (DG) --- microgrid --- microgrid stability controller (MSC) --- total sliding-mode control --- hierarchical control scheme --- maximum electrical efficiency --- nonlinear programming --- solid oxide fuel cell --- electric vehicle (EV) --- vehicle-to-grid (V2G) --- isolated grid --- load frequency control (LFC) --- multivariable generalized predictive control (MGPC) --- current harmonic reduction --- active filter --- power quality --- buck-boost converter --- renewable energy source --- optimal capacity --- reliability --- renewable --- energy storage --- genetic algorithm --- DC microgrid --- communication delay --- droop control --- load power sharing --- mesh configuration --- radial configuration --- electric vehicle --- energy management system --- peak-shift --- peak-cut --- vehicle information system --- photovoltaic feasibility --- flexible generation --- distributed energy resources --- power quality --- DC distribution --- DC microgrid --- inrush current --- grounding --- DC architectures --- datacenter --- residential power systems --- telecommunication power management --- smart grids --- microgrid --- network planning --- power distribution --- grid independence --- distributed energy resources --- micro-grid --- IEC 61850 --- plug and play --- operation --- small-scale standalone microgrid --- HESS --- ESS effective rate --- coordinated control strategy --- cost and life --- technical and economic optimization --- microgrid --- flywheel energy storage (FES) --- doubly fed induction machine --- frequency control --- smoothing wind power --- distributed generation --- congestion problems --- medium-voltage networks --- curtailment --- flexibility --- microgrid test facility --- distributed generation --- integrated electrical and thermal grids --- flexible and configurable architecture --- energy efficiency --- distributed optimization --- optimal power flow --- microgrids --- embedded system --- smart grid --- smart inverter --- distributed energy resource --- power quality

Human Health Engineering

Author:
ISBN: 9783039284085 9783039284092 Year: Pages: 428 DOI: 10.3390/books978-3-03928-409-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

In this Special Issue on human health engineering, we invited submissions exploring recent contributions to the field of human health engineering, which is the technology used for monitoring the physical or mental health status of individuals in a variety of applications. Contributions focused on sensors, wearable hardware, algorithms, or integrated monitoring systems. We organized the different papers according to their contributions to the main aspects of the monitoring and control engineering scheme applied to human health applications, including papers focusing on measuring/sensing physiological variables, contributions describing research on the modelling of biological signals, papers highlighting health monitoring applications, and finally examples of control applications for human health. In comparison to biomedical engineering, the field of human health engineering also covers applications on healthy humans (e.g., sports, sleep, and stress) and thus not only contributes to develop technology for curing patients or supporting chronically ill people, but also more generally for disease prevention and optimizing human well-being.

Keywords

artefact correction --- head-shaped phantom --- spherical phantom --- gradient artefact --- simultaneous EEG–fMRI --- calcaneal spur --- pain minimum compressive pressure --- contour of shoe insole --- insole foot area --- health information --- interface formats --- older adults --- wearable devices --- usability --- emotional reaction --- ADHD --- screening --- machine learning --- SVM --- children --- novel --- nomophobia --- anxiety --- smartphone --- internet --- cyberaddiction --- new technologies --- chronic obstructive pulmonary disease --- COPD --- oxygen uptake --- VO2 --- kinetics --- exercise testing --- rehabilitation robotics --- soft walking assistive robot --- long-term effect --- gait characteristics --- elderly person --- blood pressure estimation --- photoplethysmogram --- pulse wave --- pulse oximeter --- wearable device --- Kano-TRIZ design theory --- quality function deployment --- four-wheeled rollator --- model predictive control --- orthosis control --- muscle modeling --- arm --- Hill muscle --- swarm optimization --- pneumatic artificial muscle --- sliding mode control --- fractional calculus --- antagonistic actuator --- weight loss --- mHealth --- dynamic model --- adaptive control --- spirometry --- airflow limitation --- airway resistance --- specific airway conductance --- COPD --- body-plethysmography --- forced expiration --- alveolar pressure --- emphysema --- computed tomography --- air-trapping --- thermal comfort --- bicycle helmet --- smart wearables --- adaptive model --- streaming data --- thermal sensation --- adaptive model --- personalized model --- machine leaning --- support-vector-machine --- adaptive control --- streaming algorithm --- thermoregulation --- homeostasis --- cold-induced-vasodilation --- cold-induced-vasoconstriction --- control system --- dynamic modelling --- powered mobility --- dyskinetic cerebral palsy --- dystonia --- choreoathetosis --- mobility scale --- movement disorder --- children --- youth --- reliability --- validity --- feature engineering --- intensive care unit --- mortality prediction --- hard-margin support vector machines --- driver drowsiness --- thermoregulation --- distal skin temperature --- decision tree --- heart model --- Van der Pol --- FitzHugh–Nagumo --- relaxation oscillator --- electrocardiographic signal --- bicycle helmets --- thermal manikin --- convective and evaporative heat loss --- zonal performance characteristics --- freestyle skiing aerials --- knee joint --- ligament --- finite element simulation --- lifting technique --- stoop --- squat --- work-related musculoskeletal disorders --- musculoskeletal modeling --- spine --- shoulder --- back loading --- harmonization --- meta-analysis --- missing data --- multiple imputations --- information technology --- remoteness --- cohort studies --- control parameter reference --- stance assistance --- magnetorheological brake --- body mass index --- walking speed --- ankle torque --- ankle angular velocity --- n/a

Power Electronics in Renewable Energy Systems

Authors: ---
ISBN: 9783039210442 9783039210459 Year: Pages: 604 DOI: 10.3390/books978-3-03921-045-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

This book offers a collection of 30 scientific papers which address the problems associated with the use of power electronic converters in renewable energy source-based systems. Relevant problems associated with the use of power electronic converters to integrate renewable energy systems to the power grid are presented. Some of the covered topics relate to the integration of photovoltaic and wind energy generators into the rest of the system, and to the use of energy storage to mitigate power fluctuations, which are a characteristic of renewable energy systems. The book provides a good overview of the abovementioned topics.

Keywords

modular multilevel converter --- battery energy storage system --- state-of-charge balancing --- second-life battery --- multi-energy complementary --- microgrid --- demand response --- operation optimization --- electricity price --- peak-current-mode control --- dynamic modeling --- duty-ratio constraints --- discontinuous conduction mode --- FACTS devices --- active power filter --- static compensator --- control strategies --- grid-connected converter --- SPWM --- SVM --- maximum power point tracking --- open circuit voltage --- perturb and observe --- thermoelectric generator --- two-stage photovoltaic power --- virtual synchronous generator --- adaptive-MPPT (maximum power point tracking) --- improved-VSG (virtual synchronous generator) --- power matching --- failure zone --- governor --- frequency regulation --- inverter --- voltage-type control --- static frequency characteristics --- grid-connected converter --- adaptive resonant controller --- PLL --- impedance analysis --- distorted grid --- digital signal processor (DSP) TMS320F28335 --- grid-connected inverter --- internal model --- linear quadratic regulator --- LCL filter --- photovoltaic systems --- multilevel power converter --- soft switching --- selective harmonic mitigation --- phase shifted --- voltage cancellation --- adaptive control --- sliding mode control --- speed control --- wind energy system --- microgrid (MG) --- droop control --- washout filter --- hardware in the loop (HIL) --- active front-end converter --- back-to-back converter --- permanent magnet synchronous generator (PMSG) --- THD --- type-4 wind turbine --- wind energy system --- Opal-RT Technologies® --- synchronization --- adaptive notch filter (ANF) --- phase-locked loop (PLL) --- wind power prediction --- phase space reconstruction --- multivariate linear regression --- cloud computing --- time series --- multiple VSGs --- oscillation mitigation --- coordinated control --- small-signal and transient stability --- coordination control --- energy storage --- grid support function --- inertia --- photovoltaic --- virtual synchronous generator --- weak grid --- parallel inverters --- oscillation suppression --- notch filter --- impedance reshaping --- boost converter --- peak-current-mode control --- dynamic modeling --- discontinuous operation mode --- doubly-fed induction generator --- short-circuit fault --- frequency regulation --- variable power tracking control --- improved additional frequency control --- variable coefficient regulation --- inertia and damping characteristics --- generator speed control --- electrical power generation --- turbine and generator --- grid-connected converter --- organic Rankine cycle --- renewable energy --- multiport converter (MPC) --- single ended primary inductor converter (SEPIC) --- multi-input single output (MISO) --- renewable power system --- coupled oscillators --- virtual impedance --- synchronization --- power converters --- droop control --- virtual admittance --- distributed generation --- energy --- renewable energy --- microgrids --- Energy Internet --- energy router --- microgrid --- electric vehicle --- PV --- battery-energy storage --- DC-AC power converters --- impedance emulation --- stability analysis --- power-hardware-in- the-loop --- photovoltaic generators --- maximum power point tracking --- step size --- perturbation frequency --- source and load impedance --- transient dynamics --- stability --- grid synchronization --- power electronics --- power grid --- inverter --- grid-connected --- microgrid --- experiment --- modules --- synchronverter --- power ripple elimination --- resonant controller --- unbalanced power grid --- ROCOF --- PLL --- error --- low inertia --- VSC --- n/a

Intelligent Control in Energy Systems

Author:
ISBN: 9783039214150 9783039214167 Year: Pages: 508 DOI: 10.3390/books978-3-03921-416-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Physics (General)
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

The editors of this Special Issue titled “Intelligent Control in Energy Systems” have attempted to create a book containing original technical articles addressing various elements of intelligent control in energy systems. In response to our call for papers, we received 60 submissions. Of those submissions, 27 were published and 33 were rejected. In this book, we offer the 27 accepted technical articles as well as one editorial. Authors from 15 countries (China, Netherlands, Spain, Tunisia, United Sates of America, Korea, Brazil, Egypt, Denmark, Indonesia, Oman, Canada, Algeria, Mexico, and the Czech Republic) elaborate on several aspects of intelligent control in energy systems. The book covers a broad range of topics including fuzzy PID in automotive fuel cell and MPPT tracking, neural networks for fuel cell control and dynamic optimization of energy management, adaptive control on power systems, hierarchical Petri Nets in microgrid management, model predictive control for electric vehicle battery and frequency regulation in HVAC systems, deep learning for power consumption forecasting, decision trees for wind systems, risk analysis for demand side management, finite state automata for HVAC control, robust ?-synthesis for microgrids, and neuro-fuzzy systems in energy storage.

Keywords

lithium-ion battery pack --- soft internal short circuit --- model-based fault detection --- battery safety --- internal short circuit resistance --- load frequency control --- model uncertainty --- ?-synthesis --- differential evolution --- decision tree --- preventive control --- Fault Ride Through Capability --- doubly-fed induction generator --- ancillary service --- frequency regulation --- demand response --- commercial/residential buildings --- HVAC systems --- model predictive control --- rule-based control --- position control --- static friction --- exhaust gas recirculation (EGR) valve system --- automotive application --- hybrid electric vehicle --- compound structured permanent-magnet motor --- energy management strategy --- instantaneous optimization minimum power loss --- back propagation (BP) neural network --- power transformer winding --- vibration characteristics --- multiphysical field analysis --- short-circuit experiment --- winding-fault characteristics --- occupancy model --- occupancy-based control --- model predictive control --- energy efficiency --- building climate control --- solar monitoring system --- photovoltaic array --- energy management --- demand side management --- operation limit violations --- probabilistic power flow --- network sensitivity --- neural networks --- railway --- high-speed railway --- neutral section --- medium voltage --- thyristor --- AC static switch --- adaptive backstepping --- nonlinear power systems --- sliding mode control --- error compensation --- ?-class function --- energy internet --- multi-energy complementary --- integrated energy systems --- distribution network planning --- electric power consumption --- multi-step forecasting --- long short term memory --- convolutional neural network --- system identification --- parameter estimation --- system modelling --- model reduction --- polynomial expansion --- orthogonal least square --- industrial process --- electric vehicle --- battery packs --- active balance --- model predictive control --- hierarchical Petri nets --- urban microgrids --- phase-load balancing --- fuzzy logic controller --- MPPT: maximum power point tracking --- photovoltaic system --- step-up boost converter --- proton exchange membrane fuel cell --- four phases interleaved boost converter --- neural network controller --- AC-DC converters --- bridgeless SEPIC PFC converter --- repetitive controller --- current distortion --- current controller design --- stochastic power system operating point drift --- wind integrated power system --- power oscillations --- adaptive damping control --- continuous voltage control --- multiple-point control --- interaction minimization --- pilot point --- adjacent areas --- ANFIS --- artificial neural network --- fuzzy --- small scale compressed air energy storage (SS-CAES) --- voltage controlling --- electric meter --- error estimation --- line loss --- RLS --- double forgetting factors --- hybrid power plant --- control architecture --- coordination of reserves --- frequency support --- frequency control dead band --- fast frequency response --- frequency containment reserve --- line switching --- voltage violations --- three-stage --- fractional order fuzzy PID controller --- neural network algorithm --- PEM fuel cell --- MPPT operation --- sensitivity analysis --- intelligent control --- artificial intelligence --- energy management system --- smart micro-grid --- energy systems --- intelligent buildings --- forecasting --- multi-agent control --- optimization

Listing 1 - 10 of 15 << page
of 2
>>
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (15)


License

CC by-nc-nd (15)


Language

english (14)

eng (1)


Year
From To Submit

2020 (8)

2019 (7)