Search results: Found 6

Listing 1 - 6 of 6
Sort by
Application and Behavior of Nanomaterials in Water Treatment

Authors: --- ---
ISBN: 9783039211715 9783039211722 Year: Pages: 174 DOI: 10.3390/books978-3-03921-172-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Physics (General)
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

The book compiles scientific articles describing advances in nanomaterial synthesis and their application in water remediation. The publications treat diverse problems such as dye degradation, heavy metal ion, as well as radioactive element capture and sequestration. There are 10 original research articles and one review article. The latter proposes graphene/CNT and Prussian blue nanocomposites for radioactive 137-cesium extraction from aqueous media. All reports thoroughly characterize the nanomaterials post-synthesis and describe their catalytic, photocatalytic, or ion exchange activities in contaminated water. The dyes studied in the collection are azo dyes, i.e. methylene blue and orange, rhodamine B, phenolic dyes viz. bromophenol blue, and other dyes with sulfonyl groups. Extraction of radioactive elements, including cationic 137Cs+ and anionic 125I?, is also investigated. The omnipresence of ZnO nanoparticles in everyday products and their effects in wastewater are also evaluated. Layered double hydroxide are capable of capturing Ag ions, which then has a catalytic effect on dye degradation. The nanomaterials considered are varied, viz., graphene, CNT, Prussian blue, nanoporous carbon, layered double hydroxides, magnetite, ferrites, organic powders, polymer membranes, bacteria, and inorganic nanomaterials such as MnO and Ag. The book targets an interdisciplinary readership.

Plasma Catalysis

Author:
ISBN: 9783038977506 Year: Pages: 246 DOI: 10.3390/books978-3-03897-751-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Chemical Engineering --- Technology (General)
Added to DOAB on : 2019-04-05 10:34:31
License:

Loading...
Export citation

Choose an application

Abstract

Plasma catalysis is gaining increasing interest for various gas conversion applications, such as CO2 conversion into value-added chemicals and fuels, N2 fixation for the synthesis of NH3 or NOx, methane conversion into higher hydrocarbons or oxygenates. It is also widely used for air pollution control (e.g., VOC

Quantum Nonlocality

Author:
ISBN: 9783038979487 9783038979494 Year: Pages: 238 DOI: 10.3390/books978-3-03897-949-4 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Physics (General)
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

This book presents the current views of leading physicists on the bizarre property of quantum theory: nonlocality. Einstein viewed this theory as “spooky action at a distance” which, together with randomness, resulted in him being unable to accept quantum theory. The contributions in the book describe, in detail, the bizarre aspects of nonlocality, such as Einstein–Podolsky–Rosen steering and quantum teleportation—a phenomenon which cannot be explained in the framework of classical physics, due its foundations in quantum entanglement. The contributions describe the role of nonlocality in the rapidly developing field of quantum information. Nonlocal quantum effects in various systems, from solid-state quantum devices to organic molecules in proteins, are discussed. The most surprising papers in this book challenge the concept of the nonlocality of Nature, and look for possible modifications, extensions, and new formulations—from retrocausality to novel types of multiple-world theories. These attempts have not yet been fully successful, but they provide hope for modifying quantum theory according to Einstein’s vision.

Keywords

quantum nonlocality --- quantum mechanics --- Stern–Gerlach experiment --- quantum measurement --- pre- and post-selected systems --- retro-causal channel --- channel capacity --- channel entropy --- axioms for quantum theory --- PR box --- nonlocal correlations --- classical limit --- retrocausality --- quantum correlations --- quantum bounds --- nonlocality --- tsallis entropy --- ion channels --- selectivity filter --- quantum mechanics --- non-linear Schrödinger model --- biological quantum decoherence --- non-locality --- parity measurements --- entanglement --- pigeonhole principle --- controlled-NOT --- semiconductor nanodevices --- quantum transport --- density-matrix formalism --- Wigner-function simulations --- nonlocal dissipation models --- steering --- entropic uncertainty relation --- general entropies --- Bell’s theorem --- Einstein–Podolsky–Rosen argument --- local hidden variables --- local realism --- no-signalling --- parallel lives --- local polytope --- quantum nonlocality --- communication complexity --- optimization --- KS Box --- PR Box --- Non-contextuality inequality --- discrete-variable states --- continuous-variable states --- quantum teleportation of unknown qubit --- hybrid entanglement --- collapse of the quantum state --- quantum nonlocality --- communication complexity --- quantum nonlocality --- Bell test --- device-independent --- p-value --- hypothesis testing --- nonsignaling --- EPR steering --- quantum correlation --- non-locality --- entanglement --- uncertainty relations --- nonlocality --- entanglement --- quantum

Carbon Based Electronic Devices

Authors: ---
ISBN: 9783039282326 9783039282333 Year: Pages: 258 DOI: 10.3390/books978-3-03928-233-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering --- Technology (General)
Added to DOAB on : 2020-04-07 23:07:08
License:

Loading...
Export citation

Choose an application

Abstract

For more than 50 years, silicon has dominated the electronics industry. However, this growth will come to an end, due to resources limitations. Thus, research developments need to focus to alternative materials, with higher performance and better functionality. Current research achievements have indicated that carbon is one of the promising candidates for its exploitation in the electronics industry. Whereas the physical properties of graphite and diamond have been investigated for many years, the potential for electronic applications of other allotropes of carbon (fullerenes, carbon nanotubes, carbon nanofibres, carbon films, carbon balls and beads, carbon fibers, etc), has only been appreciated relatively recently. Carbon-based materials offer a number of exciting possibilities for new applications of electronic devices, due to their unique thermal and electrical properties. However, the success of carbon-based electronics depends on the rapid progress of the fabrication, doping and manipulation techniques. In this Special Issue, we focus on both insights and advancements in carbon-based electronics. We will also cover various topics ranging from synthesis, functionalisation, and characterisation of carbon-based materials, for their use in electronic devices, including advanced manufacturing techniques, such as 3D printing, ink-jet printing, spray-gun technique, etc.

Keywords

ionization sensor array --- NOx --- carbon nanotube (CNT) --- selectivity --- non-self-sustaining discharge --- carbon nanotube --- field emitters --- electrical aging --- Joule heating --- electron emission --- photosensor --- reduced graphene oxide --- Ag nanoparticles --- solution process --- finite-difference time-domain --- carbon nanofibres (CNFs) --- active-screen plasma sputtering (ASPS) technology --- supercapacitors (SCs) --- silver (Ag) --- platinum (Pt) and palladium (Pd) nanoparticles --- transparent conducting electrode --- flexible electrode --- graphene --- optoelectronic device --- graphene --- Galinstan --- Liquid-Metal --- spray-on --- aerosol --- honey --- mobility --- contact resistance --- TLM --- I-V characteristics --- porous electrode --- pressure sensitivity --- self-powered sensors --- mechanical impact --- carbon nanofillers --- electrical conductivity --- piezoresistive behavior --- ReRAM --- carbon nanofibers --- spray-gun deposition --- carbon Inks --- rheology --- additive manufacturing --- graphene --- carbon nanotubes --- printing --- supercapacitors --- graphene oxide --- metal nanoparticles --- dodecylbenzene sulfonic acid (DBSA) doped polyaniline --- capacitance --- humidity sensor --- carbon-based materials --- carbon nanotubes --- graphene --- carbon black --- carbon fibers --- carbon soot --- biochar --- flexible electronics --- carbon nanotubes --- graphene --- carbon fibres --- functionalization --- supercapacitors --- sensors --- inkjet printer inks --- flexible wearable devices --- electronics --- carbon-based material --- carbon structure differentiation --- NEMS quality --- higher performances --- revised Raman characterization --- quantum electronic activation --- carbon phase transition --- n/a

Advances in Peptide and Peptidomimetic Design Inspiring Basic Science and Drug Discovery: A Themed Issue Honoring Professor Victor J. Hruby on the Occasion of His 80th Birthday

Authors: --- ---
ISBN: 9783039282883 9783039282890 Year: Pages: 406 DOI: 10.3390/books978-3-03928-289-0 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Therapeutics --- Medicine (General)
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

Advances in Peptide and Peptidomimetic Design Inspiring Basic Science and Drug Discovery is a book dedicated to Prof. Victor J. Hruby on the occasion of his 80th birthday. This book includes twenty contributions from authors representing diverse multidisciplinary fields of scientific expertise, and is focused on the extraordinary potential of peptides and peptidomimetics as a surging therapeutic modality and as tools for basic research and technology development.

Keywords

MC3R --- MC4R --- mixed pharmacology --- tetrapeptides --- melanocortins --- Plk1 --- selectivity --- polo-box domain --- peptide --- triazole --- PKA --- stapled peptide --- PKI --- pseudosubstrate --- kinase inhibitor --- IP20 --- polycationic -amino acids --- small antimicrobial peptides --- sepsis --- peptidomimetics --- VEGF165 --- neuropilin-1 --- molecular dynamics --- structure–activity relationship --- OBOC --- combinatorial chemistry --- opioid --- drug screen --- molecular rotor dye --- high throughput screening --- sensor chip --- peptide --- peptide-drug conjugate --- mixed-mode pharmacology --- GLP-1 --- GnRH --- LHRH --- chemical linker --- cancer --- diabetes --- obesity --- drug discovery --- melanocortin-4 receptor --- obesity --- peptide agonist --- cardiovascular profile --- G?S signaling --- receptor desensitization --- receptor internalization --- peptidomimetics --- azapeptides --- aza-amino acids --- ?-hairpin --- ?-sheet --- programmed cell death ligand protein 1 --- pharmacophore --- peptide --- small molecule --- anticancer peptide --- therapeutic peptides --- support vector machine --- random forest --- machine learning --- classification --- peptides --- endosomolytic --- amphiphilic --- fusogenic --- influenza hemagglutinin --- RBC lysis --- peptide permeability --- stapled peptide --- macrocyclic peptide --- D-amino acid --- helix-breaker --- adaptogenic --- autophagy --- ?-ginkgotide --- cytoprotective --- cysteine-rich peptides --- disulfide-rich scaffold --- hyperdisulfide --- hypoxia --- LIR motif --- ginkgo nuts --- ?-helix mimetics --- bis-benzamide scaffold --- protein–protein interaction --- prostate cancer --- androgen receptor --- coactivator PELP1 --- Ranalexin --- peptide therapeutics --- antibiotics --- configuration --- antimicrobial activity --- cancer vaccine --- synthetic vaccine --- adjuvant --- Toll-like receptor --- Pam2Cys --- N-acetylated Pam2Cys --- bioconjugation --- lipidation --- prostaglandin F2? --- preterm labor --- myometrium contractions --- peptidomimetic --- structure-activity --- opioids --- multifunctional ligands --- peptide design --- free energy calculation --- d-amino acid scan --- alanine scan

Design and Development of Nanostructured Thin Films

Authors: --- ---
ISBN: 9783039287383 / 9783039287390 Year: Pages: 386 DOI: 10.3390/books978-3-03928-739-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General)
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Due to their unique size-dependent physicochemical properties, nanostructured thin films are used in a wide range of applications from smart coating and drug delivery to electrocatalysis and highly-sensitive sensors. Depending on the targeted application and the deposition technique, these materials have been designed and developed by tuning their atomic-molecular 2D- and/or 3D-aggregation, thickness, crystallinity, and porosity, having effects on their optical, mechanical, catalytic, and conductive properties. Several open questions remain about the impact of nanomaterial production and use on environment and health. Many efforts are currently being made not only to prevent nanotechnologies and nanomaterials from contributing to environmental pollution but also to design nanomaterials to support, control, and protect the environment. This Special Issue aims to cover the recent advances in designing nanostructured films focusing on environmental issues related to their fabrication processes (e.g., low power and low cost technologies, the use of environmentally friendly solvents), their precursors (e.g., waste-recycled, bio-based, biodegradable, and natural materials), their applications (e.g., controlled release of chemicals, mimicking of natural processes, and clean energy conversion and storage), and their use in monitoring environment pollution (e.g., sensors optically- or electrically-sensitive to pollutants)

Keywords

InAlN --- nanospiral --- metamaterial --- sputtering --- chirality --- microparticle deposition --- self-assembly --- homogeneity --- monomer synthesis --- mask --- hazardous organic solvents --- photonic nanostructures --- self-assembly --- polymer nanoparticles --- biomimetic solvent sensors --- iridescence --- mesoporous --- Al2O3 --- MgO --- poly(dimethylacrylamide) --- hydrogel --- thin film --- spin coating --- SEM --- FIB --- Kr physisorption --- hydrogenated amorphous carbon films --- metallic nanoparticles --- hybrid deposition system --- nanoscratch --- nanocomposites --- aqueous dispersion --- carbon nanotube --- graphene oxide --- ink --- rod coating --- electrical conductivity --- optical transmittance --- mechanical flexibility --- silk sericin --- agarose --- lysozyme --- composite gel --- wound dressing --- nanofiber --- lamination --- water filtration --- CdTe --- self-catalysed --- wires --- Mg alloy --- LDH --- corrosion --- deposition --- coating --- ReB2/TaN multilayers --- modulation structure --- first-principles calculation --- interfacial model --- adsorption energy --- interfacial energy --- biomaterial --- biomedical --- nanofibers --- scaffolds --- reinforced --- hybrid material --- thermal analysis --- nanofibrous membranes --- light trapping --- silicon thin film --- photovoltaics --- polystyrene sphere assisted lithography --- nanostructured back reflectors --- Raman scattering --- quantum confinement --- electron–phonon coupling --- polar semiconductors --- zinc oxide --- metal-organic framework --- microscopy --- thin films --- powders --- electrodeposition --- platinum --- highly oriented pyrolytic graphite --- 2D growth --- barrier material --- nanocoating of SiOx --- polymeric matrix --- plasma deposition --- PVD --- PA-PVD --- PECVD --- permeation --- CERAMIS® --- SorpTest --- iron oxides --- FeO --- Fe3O4 --- ultrathin films --- epitaxial growth --- platinum --- ruthenium --- symmetry --- LEEM --- LEED --- XPEEM --- electrodeposition --- platinum --- highly oriented pyrolytic graphite --- 2D growth --- thin films --- TiO2NPs --- AuNPs --- photocatalysis --- mercury vapors adsorbing layer --- PAS device --- iron oxides --- ultrathin films --- silver --- epitaxial growth --- structural characterization --- STM --- LEED --- XPS --- DFT --- model system --- Pt thin deposits --- galvanic displacement --- UPD --- SLRR --- electrocatalysis --- nanostructured films --- birefringence --- nanocrystalline cellulose --- Mueller matrix --- vanadium dioxide --- post-treatment --- plasma irradiation --- luminous transmittance --- phase transition performance --- electrospinning deposition --- chemosensor --- nanocomposite conductive polymers --- polyhydroxibutyrate --- polystyrene --- H2TPP --- VOCs selectivity --- mesoporous graphene --- thin film --- nanostructure --- CaxCoO2 --- sputtering --- phase transformation --- Ge surface engineering --- La2O3 passivation layer --- atomic layer deposition --- electrical properties

Listing 1 - 6 of 6
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (6)


License

CC by-nc-nd (6)


Language

english (5)

eng (1)


Year
From To Submit

2020 (3)

2019 (3)