Search results: Found 4

Listing 1 - 4 of 4
Sort by
Modeling Individual Differences in Perceptual Decision Making

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889450565 Year: Pages: 140 DOI: 10.3389/978-2-88945-056-5 Language: English
Publisher: Frontiers Media SA
Subject: Psychology --- Science (General)
Added to DOAB on : 2017-07-06 13:27:36
License:

Loading...
Export citation

Choose an application

Abstract

To deal with the abundant amount of information in the environment in order to achieve our goals, human beings adopt a strategy to accumulate some information and filter out other information to ultimately make decisions. Since the development of cognitive science in the 1960s, researchers have been interested in understanding how human beings process and accumulate information for decision-making. Researchers have conducted extensive behavioral studies and applied a wide range of modeling tools to study human behavior in simple-detection tasks and two-choice decision tasks (e.g., discrimination, classification). In general, researchers often assume that the manner in which information is processed for decision-making is invariant across individuals given a particular experimental context. Independent variables, including speed-accuracy instructions, stimulus properties (i.e., intensity), and characteristics of the participants (i.e., aging, cognitive ability) are assumed to affect the parameters in a model (i.e., speed of information accumulation, response bias) but not the way that participants process information (e.g., the order of information processing). Given these assumptions, much modeling has been accomplished based on the grouped data, rather than the individual data. However, a growing number of studies have demonstrated that there were individual differences in the perceptual decision process. In the same task context, different groups of the participants may process information in different manners. The capacity and architecture of the decision mechanism were found to vary across individuals, implying that humans’ decision strategies can vary depending on the context to maximize their performance. In this special issue, we focused on a particular subset of cognitive models, particularly accumulator models, multinomial processing trees and systems factorial technology (SFT) as applied to perceptual decision making. The motivation for the focus on perceptual decision-making is threefold. Empirical studies of perception have grown out of a history of making a large number of observations for each individual so as to achieve precise estimates of each individual’s performance. This type of data, rather than a small number of observations per individual, is most amenable to achieving precision in individual-level and group-level cognitive modeling. Second, the interaction between the acquisition of perceptual information and the decisions based on that information (to the extent that those processes are distinguishable) offers rich data for scientific exploration. Finally, there is an increasing interest in the practical application of individual variation in perceptual ability, whether to inform perceptual training and expertise, or to guide personnel decisions. Although these practical applications are beyond the scope of this issue, we hope that the research presented herein may serve as the foundation for future endeavors in that domain. To deal with the abundant amount of information in the environment in order to achieve our goals, human beings adopt a strategy to accumulate some information and filter out other information to ultimately make decisions. Since the development of cognitive science in the 1960s, researchers have been interested in understanding how human beings process and accumulate information for decision-making. Researchers have conducted extensive behavioral studies and applied a wide range of modeling tools to study human behavior in simple-detection tasks and two-choice decision tasks (e.g., discrimination, classification). In general, researchers often assume that the manner in which information is processed for decision-making is invariant across individuals given a particular experimental context. Independent variables, including speed-accuracy instructions, stimulus properties (i.e., intensity), and characteristics of the participants (i.e., aging, cognitive ability) are assumed to affect the parameters in a model (i.e., speed of information accumulation, response bias) but not the way that participants process information (e.g., the order of information processing). Given these assumptions, much modeling has been accomplished based on the grouped data, rather than the individual data. However, a growing number of studies have demonstrated that there were individual differences in the perceptual decision process. In the same task context, different groups of the participants may process information in different manners. The capacity and architecture of the decision mechanism were found to vary across individuals, implying that humans’ decision strategies can vary depending on the context to maximize their performance. In this special issue, we focused on a particular subset of cognitive models, particularly accumulator models, multinomial processing trees and systems factorial technology (SFT) as applied to perceptual decision making. The motivation for the focus on perceptual decision-making is threefold. Empirical studies of perception have grown out of a history of making a large number of observations for each individual so as to achieve precise estimates of each individual’s performance. This type of data, rather than a small number of observations per individual, is most amenable to achieving precision in individual-level and group-level cognitive modeling. Second, the interaction between the acquisition of perceptual information and the decisions based on that information (to the extent that those processes are distinguishable) offers rich data for scientific exploration. Finally, there is an increasing interest in the practical application of individual variation in perceptual ability, whether to inform perceptual training and expertise, or to guide personnel decisions. Although these practical applications are beyond the scope of this issue, we hope that the research presented herein may serve as the foundation for future endeavors in that domain.

Liquid Crystal Optical Device

Authors: ---
ISBN: 9783039280568 9783039280575 Year: Pages: 98 DOI: 10.3390/books978-3-03928-057-5 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Physics (General) --- Science (General)
Added to DOAB on : 2020-01-30 16:39:46
License:

Loading...
Export citation

Choose an application

Abstract

The Special Issue “Liquid Crystal Optical Devices” discusses recent developments in the rapidly advancing subject of liquid crystals (LCs).

Applications of Power Electronics

Authors: --- ---
ISBN: 9783038979746 9783038979753 Year: Volume: 1 Pages: 476 DOI: 10.3390/books978-3-03897-975-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering --- Technology (General)
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Power electronics technology is still an emerging technology, and it has found its way into many applications, from renewable energy generation (i.e., wind power and solar power) to electrical vehicles (EVs), biomedical devices, and small appliances, such as laptop chargers. In the near future, electrical energy will be provided and handled by power electronics and consumed through power electronics; this not only will intensify the role of power electronics technology in power conversion processes, but also implies that power systems are undergoing a paradigm shift, from centralized distribution to distributed generation. Today, more than 1000 GW of renewable energy generation sources (photovoltaic (PV) and wind) have been installed, all of which are handled by power electronics technology. The main aim of this book is to highlight and address recent breakthroughs in the range of emerging applications in power electronics and in harmonic and electromagnetic interference (EMI) issues at device and system levels as discussed in ?robust and reliable power electronics technologies, including fault prognosis and diagnosis technique stability of grid-connected converters and ?smart control of power electronics in devices, microgrids, and at system levels.

Keywords

energy storage --- lithium-ion battery --- battery management system BMS --- battery modeling --- state of charge SoC --- grid-connected inverter --- power electronics --- multi-objective optimization --- switching frequency --- total demand distortion --- switching losses --- EMI filter --- power converter --- power density --- optimal design --- electrical drives --- axial flux machines --- magnetic equivalent circuit --- torque ripple --- back EMF --- permanent-magnet machines --- five-phase permanent magnet synchronous machine --- five-leg voltage source inverter --- multiphase space vector modulation --- sliding mode control --- extended Kalman filter --- voltage source inverters (VSI) --- voltage control --- current control --- digital control --- predictive controllers --- advanced controllers --- stability --- response time --- lithium-ion batteries --- electric vehicles --- battery management system --- electric power --- dynamic PV model --- grid-connected VSI --- HF-link MPPT converter --- nanocrystalline core --- SiC PV Supply --- DC–DC converters --- multi-level control --- renewable energy resources control --- electrical engineering communications --- microgrid control --- distributed control --- power system operation and control --- variable speed pumped storage system --- droop control --- vector control --- phasor model technique --- nine switch converter --- synchronous generator --- digital signal controller --- static compensator, distribution generation --- hybrid converter --- multi-level converter (MLC) --- series active filter --- power factor correction (PFC) --- field-programmable gate array --- particle swarm optimization --- selective harmonic elimination method --- voltage source converter --- plug-in hybrid electric vehicles --- power management system --- renewable energy sources --- fuzzy --- smart micro-grid --- five-phase machine --- fault-tolerant control --- induction motor --- one phase open circuit fault (1-Ph) --- adjacent two-phase open circuit fault (A2-Ph) --- volt-per-hertz control (scalar control) --- current-fed inverter --- LCL-S topology --- semi-active bridge --- soft switching --- voltage boost --- wireless power transfer --- DC–DC conversion --- zero-voltage switching (ZVS) --- transient control --- DC–DC conversion --- bidirectional converter --- power factor correction --- line frequency instability --- one cycle control --- non-linear phenomena --- bifurcation --- boost converter --- converter --- ice melting --- modular multilevel converter (MMC) --- optimization design --- transmission line --- static var generator (SVG) --- hardware-in-the-loop --- floating-point --- fixed-point --- real-time emulation --- field programmable gate array --- slim DC-link drive --- VPI active damping control --- total harmonic distortion --- cogging torque --- real-time simulation --- power converters --- nonlinear control --- embedded systems --- high level programing --- SHIL --- DHIL --- 4T analog MOS control --- high frequency switching power supply --- water purification --- modulation index --- electromagnetic interference --- chaotic PWM --- DC-DC buck converter --- CMOS chaotic circuit --- triangular ramp generator --- spread-spectrum technique --- system in package --- electric vehicle --- wireless power transfer --- inductive coupling --- coupling factor --- phase-shift control --- series-series compensation --- PSpice --- fixed-frequency double integral sliding-mode (FFDISM) --- class-D amplifier --- Q-factor --- GaN cascode --- direct torque control (DTC) --- composite active vectors modulation (CVM) --- permanent magnet synchronous motor (PMSM) --- effect factors --- double layer capacitor (DLC) models --- energy storage modelling --- simulation models --- current control loops --- dual three-phase (DTP) permanent magnet synchronous motors (PMSMs) --- space vector pulse width modulation (SVPWM) --- vector control --- voltage source inverter --- active rectifiers --- single-switch --- analog phase control --- digital phase control --- wireless power transfer --- three-level boost converter (TLBC) --- DC-link cascade H-bridge (DCLCHB) inverter --- conducting angle determination (CAD) techniques --- total harmonic distortion (THD) --- three-phase bridgeless rectifier --- fault diagnosis --- fault tolerant control --- hardware in loop --- compensation topology --- electromagnetic field (EMF) --- electromagnetic field interference (EMI) --- misalignment --- resonator structure --- wireless power transfer (WPT) --- WPT standards --- EMI filter --- electromagnetic compatibility --- AC–DC power converters --- electromagnetic interference filter --- matrix converters --- current source --- power density --- battery energy storage systems --- battery chargers --- active receivers --- frequency locking --- reference phase calibration --- synchronization --- wireless power transfer --- lithium-ion batteries --- SOC estimator --- parameter identification --- particle swarm optimization --- improved extended Kalman filter --- battery management system --- PMSG --- DC-link voltage control --- variable control gain --- disturbance observer --- lithium-ion power battery pack --- composite equalizer --- active equalization --- passive equalization --- control strategy and algorithm --- n/a --- common-mode inductor --- high-frequency modeling --- electromagnetic interference --- filter --- fault diagnosis --- condition monitoring --- induction machines --- support vector machines --- expert systems --- neural networks --- DC-AC power converters --- frequency-domain analysis --- impedance-based model --- Nyquist stability analysis --- small signal stability analysis --- harmonic linearization --- line start --- permanent magnet --- synchronous motor --- efficiency motor --- rotor design --- harmonics --- hybrid power filter --- active power filter --- power quality --- total harmonic distortion --- equivalent inductance --- leakage inductance --- switching frequency modelling --- induction motor --- current switching ripple --- multilevel inverter --- cascaded topology --- voltage doubling --- switched capacitor --- nearest level modulation (NLM) --- total harmonic distortion (THD) --- dead-time compensation --- power converters --- harmonics --- n/a

Applications of Power Electronics

Authors: --- ---
ISBN: 9783039210206 9783039210213 Year: Volume: 2 Pages: 500 DOI: 10.3390/books978-3-03921-021-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering --- Technology (General)
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Power electronics technology is still an emerging technology, and it has found its way into many applications, from renewable energy generation (i.e., wind power and solar power) to electrical vehicles (EVs), biomedical devices, and small appliances, such as laptop chargers. In the near future, electrical energy will be provided and handled by power electronics and consumed through power electronics; this not only will intensify the role of power electronics technology in power conversion processes, but also implies that power systems are undergoing a paradigm shift, from centralized distribution to distributed generation. Today, more than 1000 GW of renewable energy generation sources (photovoltaic (PV) and wind) have been installed, all of which are handled by power electronics technology. The main aim of this book is to highlight and address recent breakthroughs in the range of emerging applications in power electronics and in harmonic and electromagnetic interference (EMI) issues at device and system levels as discussed in ?robust and reliable power electronics technologies, including fault prognosis and diagnosis technique stability of grid-connected converters and ?smart control of power electronics in devices, microgrids, and at system levels.

Keywords

energy storage --- lithium-ion battery --- battery management system BMS --- battery modeling --- state of charge SoC --- grid-connected inverter --- power electronics --- multi-objective optimization --- switching frequency --- total demand distortion --- switching losses --- EMI filter --- power converter --- power density --- optimal design --- electrical drives --- axial flux machines --- magnetic equivalent circuit --- torque ripple --- back EMF --- permanent-magnet machines --- five-phase permanent magnet synchronous machine --- five-leg voltage source inverter --- multiphase space vector modulation --- sliding mode control --- extended Kalman filter --- voltage source inverters (VSI) --- voltage control --- current control --- digital control --- predictive controllers --- advanced controllers --- stability --- response time --- lithium-ion batteries --- electric vehicles --- battery management system --- electric power --- dynamic PV model --- grid-connected VSI --- HF-link MPPT converter --- nanocrystalline core --- SiC PV Supply --- DC–DC converters --- multi-level control --- renewable energy resources control --- electrical engineering communications --- microgrid control --- distributed control --- power system operation and control --- variable speed pumped storage system --- droop control --- vector control --- phasor model technique --- nine switch converter --- synchronous generator --- digital signal controller --- static compensator, distribution generation --- hybrid converter --- multi-level converter (MLC) --- series active filter --- power factor correction (PFC) --- field-programmable gate array --- particle swarm optimization --- selective harmonic elimination method --- voltage source converter --- plug-in hybrid electric vehicles --- power management system --- renewable energy sources --- fuzzy --- smart micro-grid --- five-phase machine --- fault-tolerant control --- induction motor --- one phase open circuit fault (1-Ph) --- adjacent two-phase open circuit fault (A2-Ph) --- volt-per-hertz control (scalar control) --- current-fed inverter --- LCL-S topology --- semi-active bridge --- soft switching --- voltage boost --- wireless power transfer --- DC–DC conversion --- zero-voltage switching (ZVS) --- transient control --- DC–DC conversion --- bidirectional converter --- power factor correction --- line frequency instability --- one cycle control --- non-linear phenomena --- bifurcation --- boost converter --- converter --- ice melting --- modular multilevel converter (MMC) --- optimization design --- transmission line --- static var generator (SVG) --- hardware-in-the-loop --- floating-point --- fixed-point --- real-time emulation --- field programmable gate array --- slim DC-link drive --- VPI active damping control --- total harmonic distortion --- cogging torque --- real-time simulation --- power converters --- nonlinear control --- embedded systems --- high level programing --- SHIL --- DHIL --- 4T analog MOS control --- high frequency switching power supply --- water purification --- modulation index --- electromagnetic interference --- chaotic PWM --- DC-DC buck converter --- CMOS chaotic circuit --- triangular ramp generator --- spread-spectrum technique --- system in package --- electric vehicle --- wireless power transfer --- inductive coupling --- coupling factor --- phase-shift control --- series-series compensation --- PSpice --- fixed-frequency double integral sliding-mode (FFDISM) --- class-D amplifier --- Q-factor --- GaN cascode --- direct torque control (DTC) --- composite active vectors modulation (CVM) --- permanent magnet synchronous motor (PMSM) --- effect factors --- double layer capacitor (DLC) models --- energy storage modelling --- simulation models --- current control loops --- dual three-phase (DTP) permanent magnet synchronous motors (PMSMs) --- space vector pulse width modulation (SVPWM) --- vector control --- voltage source inverter --- active rectifiers --- single-switch --- analog phase control --- digital phase control --- wireless power transfer --- three-level boost converter (TLBC) --- DC-link cascade H-bridge (DCLCHB) inverter --- conducting angle determination (CAD) techniques --- total harmonic distortion (THD) --- three-phase bridgeless rectifier --- fault diagnosis --- fault tolerant control --- hardware in loop --- compensation topology --- electromagnetic field (EMF) --- electromagnetic field interference (EMI) --- misalignment --- resonator structure --- wireless power transfer (WPT) --- WPT standards --- EMI filter --- electromagnetic compatibility --- AC–DC power converters --- electromagnetic interference filter --- matrix converters --- current source --- power density --- battery energy storage systems --- battery chargers --- active receivers --- frequency locking --- reference phase calibration --- synchronization --- wireless power transfer --- lithium-ion batteries --- SOC estimator --- parameter identification --- particle swarm optimization --- improved extended Kalman filter --- battery management system --- PMSG --- DC-link voltage control --- variable control gain --- disturbance observer --- lithium-ion power battery pack --- composite equalizer --- active equalization --- passive equalization --- control strategy and algorithm --- n/a --- common-mode inductor --- high-frequency modeling --- electromagnetic interference --- filter --- fault diagnosis --- condition monitoring --- induction machines --- support vector machines --- expert systems --- neural networks --- DC-AC power converters --- frequency-domain analysis --- impedance-based model --- Nyquist stability analysis --- small signal stability analysis --- harmonic linearization --- line start --- permanent magnet --- synchronous motor --- efficiency motor --- rotor design --- harmonics --- hybrid power filter --- active power filter --- power quality --- total harmonic distortion --- equivalent inductance --- leakage inductance --- switching frequency modelling --- induction motor --- current switching ripple --- multilevel inverter --- cascaded topology --- voltage doubling --- switched capacitor --- nearest level modulation (NLM) --- total harmonic distortion (THD) --- dead-time compensation --- power converters --- harmonics --- n/a

Listing 1 - 4 of 4
Sort by
Narrow your search