Search results: Found 2

Listing 1 - 2 of 2
Sort by
The Challenges of Water Management and Governance in Cities

Authors: --- --- ---
ISBN: 9783039211500 9783039211517 Year: Pages: 314 DOI: 10.3390/books978-3-03921-151-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General)
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Global population growth is urban growth and, therefore, most of the water-related challenges and solutions reside in cities. Unless water management and water governance processes are significantly improved within the next decade or so, cities are likely to face serious and prolonged water insecurity, urban floods, and/or heat stress, which may result in social instability and, ultimately, massive migration. Aging water infrastructure, one of the most expensive infrastructures in cities, is a relevant challenge in order to address Sustainable Development Goal (SDG) 6: clean water and sanitation, SDG 11: sustainable cities and communities, and SDG 13: climate action. The choice of good governance arrangements has important consequences for economic performance, for the well-being of citizens, and for the quality of life in urban areas. The better governance arrangements work in coordinating policies across jurisdictions and policy fields, the better the outcomes. Rapidly-changing global conditions will make future water governance more complex than ever before in human history, and expectations are that water governance and water management will change more during the next 20 years compared to the past 100 years. In this Special Issue of Water, the focus will be on practical concepts and tools for water management and water governance, with a focus on cities.

Keywords

Integrated Water Resources Management --- water management sustainability --- urban resilience --- urban water cycle --- water governance --- water-reuse --- governance capacity --- water management --- water scarcity --- Sponge City --- water ecology --- storm water management --- flood control --- resilience --- rainfall-runoff --- storm water control measure --- SuDS --- urban drainage --- urban landscape --- urban planning --- flood risk management --- flood resilience --- governance strategies --- climate change --- assessment framework --- sustainability assessment --- baseline assessment --- co-design --- stakeholder involvement --- wastewater management --- Cape Town --- City Blueprint Approach --- water governance --- water scarcity --- water sensitive cities --- climate change adaptation --- stormwater reservoir --- Generalized Likelihood Uncertainty Estimation (GLUE) --- design rainfall event --- Storm Water Management Model (SWMM) --- coordination --- water supply --- social network analysis --- climate change --- IHP --- intergovernmental --- science and technology --- sustainability --- UNESCO --- water management --- water security --- Urban Water Management Programme --- water governance --- infrastructure --- urban water management --- indicators --- SDGs --- stakeholder participation --- water policy --- rainwater harvesting --- footprint --- lifecycle analysis --- total cost of ownership --- sustainability --- urban water management --- drinking water --- city networks --- climate change --- ICLEI --- Sustainable Development Goals (SDGs) --- urban water management --- use-attainment --- social network analysis --- urban planning --- governance --- social infrastructure --- cost of inaction --- urban pluvial flooding --- flood damage assessment --- flood risk --- greenhouse gas emissions --- decentralized water reclamation with resource recovery --- Water-Energy-Food Nexus --- climate change mitigation --- water governance --- urban water management --- resilience --- sustainable development goals

Bio-Based Polymers for Engineered Green Materials

Authors: ---
ISBN: 9783039289257 / 9783039289264 Year: Pages: 568 DOI: 10.3390/books978-3-03928-926-4 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

With daily signals, Nature is communicating us that its unconscious wicked exploitation is no more sustainable. Our socio-economic system focuses on production increasing without considering the consequences. We are intoxicating ourselves on a daily bases just to allow the system to perpetuate itself. The time to switch into more natural solutions is come and the scientific community is ready to offer more natural product with comparable performance then the market products we are used to deal with. This book collects a broad set of scientific examples in which research groups from all over the world, aim to replace fossil fuel-based solutions with biomass derived materials. In here, some of the most innovative developments in the field of bio-materials are reported considering topics which goes from biomass valorization to the synthesis of high preforming bio-based materials.

Keywords

thermoplastic starch --- corn starch --- chitosan --- crosslinked microparticles --- lignin-containing cellulose nanofibrils --- poly(lactic acid) and composite films --- lignin content --- compatibility --- adsorption --- phenanthrene --- pyrene --- benzoyl cellulose --- stearoyl cellulose --- silkworm cocoons --- dense structure --- porosity --- robust fiber network --- mechanical properties --- photodegradation --- liquid natural rubber --- UV light --- TiO2 anatase --- latex state --- wood modification --- alkali lignin --- water resistance --- dimensional stability --- heat treatment --- polymeric composites --- antifouling --- metal binding --- iron chelation --- polydopamine coating --- free-radical polymerization --- galactoglucomannan --- lignin --- lignin-carbohydrate complex --- ultrafiltration --- precipitation --- hydrogel --- recycling --- thermal degradation --- mechanical degradation --- polylactic acid --- Bioflex --- Solanyl --- PHBV --- poly(lactic acid) --- pulp fibers --- biocomposite --- emulsion-solvent evaporation method --- films --- mechanical properties --- PHA --- mixed microbial cultures --- bioplastics --- feast-famine --- cost --- Peptone --- Microbial nutrient --- Anti-bacterial silver nanoparticle --- Escherichia coli --- Staphylococcus aureus --- tannin --- hemicellulose --- waste biomass --- HSQC-NMR --- pyrolysis mechanism --- hydrotropic treatment --- metal chloride --- delignification --- enzymatic saccharification --- lignocellulosic nanofibrils --- microencapsulated phase change material (MPCM) --- polylactic acid (PLA) --- toughening --- endothermic effect --- kenaf fiber --- hybrid composites --- bio-based --- film --- mechanical properties --- polysaccharides --- resource recovery --- solution casting --- orange waste --- nanocelluloses --- cellulose nanofibers --- cellulose nanocrystals --- bacterial cellulose --- cement --- fiber-cement --- Hatscheck process --- bio-inspired interfaces --- mechanical properties --- thermal stability --- sensitivity --- electrospinning --- tissue engineering --- paper-based scaffolds --- osteoblast proliferation --- polycaprolactone --- biopolymers --- nanoclays --- nanobiocomposites --- extrusion-compounding --- polyhydroxyalkanoates --- thermal properties --- mechanical properties --- differential scanning calorimetry --- nuclear magnetic resonance --- X-ray diffraction --- transparent wood --- chemical composition --- H2O2 bleaching treatment --- physicochemical properties --- cellulose --- electrical resistance --- copper coating --- electroless deposition --- humidity sensor --- strain sensor --- lyocell fiber --- asphalt rubber --- bio-asphalt --- mixing sequence --- workability --- storage stability --- tung oil --- unsaturated polyester resins --- thermosetting polymers --- structure–property relationship --- structural plastics --- ONP fibers --- silanization --- composites --- mechanical properties --- Artemisia vulgaris --- microcellulose fiber --- nanocellulose fibers --- natural fibers --- Bio-based foams --- wastewater treatments --- cationic dyes --- anionic surfactants --- pollutant adsorbents --- tannin polymer --- tannin-furanic foam --- biopolymers --- nanoclays --- bio-nanocomposites --- extrusion-compounding --- polyhydroxyalkanoates --- thermal properties --- microstructure --- volatiles --- autoxidation --- thermal gravimetric analysis --- scanning electron microscope --- headspace solid phase microextraction --- alginate sponge --- two-step lyophilization --- methylene blue --- adsorption capacity --- biomass resources --- hybrid nonisocyanate polyurethane --- solvent- and catalyst-free --- dimer acid --- melt condensation --- bacterial cellulose --- surface modification --- TEMPO oxidation --- one-pot synthesis --- immobilized TEMPO --- physical property --- skincare --- cellulose --- graphene oxide --- ionic liquid --- membrane --- transport properties --- heavy metals --- porous structure --- SAXS --- WAXS --- cellulose --- wood --- lignocellulose --- ionic liquid --- imidazolium --- fractionation --- dissolution --- GC-MS --- kaempferol --- knotwood --- larixol --- taxifolin --- vibrational spectroscopy --- n/a

Listing 1 - 2 of 2
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (2)


License

CC by-nc-nd (2)


Language

eng (1)

english (1)


Year
From To Submit

2020 (1)

2019 (1)