Search results: Found 16

Listing 1 - 10 of 16 << page
of 2
>>
Sort by
Messung und Berechnung des Resonanzverhaltens gekoppelter Helmholtz-Resonatoren in technischen Verbrennungssystemen

Author:
ISBN: 9783866446588 Year: Pages: XIV, 150 p. DOI: 10.5445/KSP/1000022479 Language: GERMAN
Publisher: KIT Scientific Publishing
Subject: Chemical Engineering
Added to DOAB on : 2019-07-30 20:01:59
License:

Loading...
Export citation

Choose an application

Abstract

Für eine quantitative Vorhersage des Stabilitätsverhaltens eines technischen Verbrennungssystems in Hinblick auf das Auftreten selbsterregter Druck-/Flammenschwingungen, ist es u. a von entscheidender Bedeutung das Übertragungsverhalten der Brennkammer einschließlich vor- und nachgeschalteter Bauteile zu kennen (Helmholtz-Resonatoren). In dieser Arbeit wurde ein Modell zur Vorhersage des Resonanzverhaltens realer, gedämpfter Verbrennungssysteme auf gekoppelte Systeme erweitert.

Untersuchung der Eigenschaften von planaren Mikrowellenresonatoren für Kinetic-Inductance Detektoren bei 4,2 K

Author:
Book Series: Karlsruher Schriftenreihe zur Supraleitung / Hrsg. Prof. Dr.-Ing. M. Noe, Prof. Dr. rer. nat. M. Siegel ISSN: 18691765 ISBN: 9783866447158 Year: Volume: 5 Pages: V, 211p. DOI: 10.5445/KSP/1000023889 Language: GERMAN
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:01:58
License:

Loading...
Export citation

Choose an application

Abstract

Das Konzept der Kinetic-Inductance Detektoren (KID) bietet ein großes Potential für den Entwurf von hochempfindlichen und hochauflösenden Detektorarrays. In dieser Arbeit werden für KIDs planare Leitungsresonatoren optimiert und deren Güten maximiert. Anhand von Simulationen und Messungen wird die Packungsdichte von Multi-Resonator-Systemen untersucht und parasitäre Kopplungen minimiert. Die Erweiterung vom Einzelresonator zum Array wird aufgezeigt.

Hybrid quantum system based on rare earth doped crystals

Author:
Book Series: Experimental Condensed Matter Physics / Karlsruher Institut für Technologie, Physikalisches Institut ISSN: 21919925 ISBN: 9783731503453 Year: Volume: 16 Pages: II, 140 S DOI: 10.5445/KSP/1000045903 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Physics (General)
Added to DOAB on : 2019-07-30 20:02:00
License:

Loading...
Export citation

Choose an application

Abstract

Hybrid quantum circuits interfacing rare earth spin ensembles with microwave resonators are a promising approach for application as coherent quantum memory and frequency converter. In this thesis, hybrid circuits based on Er and Nd ions doped into Y?SiO? and YAlO? crystals are investigated by optical and on-chip microwave spectroscopy. Coherent strong coupling between the microwave resonator and spin ensemble as well as a multimode memory for weak coherent microwave pulses are demonstrated.

Higher Symmetries and Its Application in Microwave Technology, Antennas and Metamaterials

Authors: ---
ISBN: 9783039218769 9783039218776 Year: Pages: 98 DOI: 10.3390/books978-3-03921-877-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-01-07 09:08:26
License:

Loading...
Export citation

Choose an application

Abstract

Artificial materials have been widely studied and used in photonics and microwaves in the last few decades. Recent research has proven that the introduction of specific higher symmetries in each cell of a periodic medium is an effective approach to obtain unprecedented exotic behaviors and to overcome the current limitations of these devices. For example, simple symmetries of a purely spatial type (glide or twist transformations) can have a huge impact on the properties of the resulting materials, thus defining wideband behaviors for flat lenses or large stop bands for novel EBG materials. This Special Issue opens with a novel discussion on the effect of time-reversal symmetries in antenna theory and presents new structures exploiting symmetries for antenna and microwave components, such as flat lenses, helix antennas, and gap-waveguides. Finally, new modeling methods are discussed for the study of wave propagation along glide surfaces and twist lines.

Development of CMOS-MEMS/NEMS Devices

Authors: ---
ISBN: 9783039210688 9783039210695 Year: Pages: 165 DOI: 10.3390/books978-3-03921-069-5 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-06-26 08:44:07
License:

Loading...
Export citation

Choose an application

Abstract

Micro and nano-electro-mechanical system (M/NEMS) devices constitute key technological building blocks to enable increased additional functionalities within Integrated Circuits (ICs) in the More-Than-Moore era, as described in the International Technology Roadmap for Semiconductors. The CMOS ICs and M/NEMS dies can be combined in the same package (SiP), or integrated within a single chip (SoC). In the SoC approach the M/NEMS devices are monolithically integrated together with CMOS circuitry allowing the development of compact and low-cost CMOS-M/NEMS devices for multiple applications (physical sensors, chemical sensors, biosensors, actuators, energy actuators, filters, mechanical relays, and others). On-chip CMOS electronics integration can overcome limitations related to the extremely low-level signals in sub-micrometer and nanometer scale electromechanical transducers enabling novel breakthrough applications. This Special Issue aims to gather high quality research contributions dealing with MEMS and NEMS devices monolithically integrated with CMOS, independently of the final application and fabrication approach adopted (MEMS-first, interleaved MEMS, MEMS-last or others).]

Glassy Materials Based Microdevices

Authors: ---
ISBN: 9783038976189 Year: Pages: 284 DOI: 10.3390/books978-3-03897-619-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Electrical and Nuclear Engineering --- General and Civil Engineering --- Technology (General)
Added to DOAB on : 2019-03-21 15:50:41
License:

Loading...
Export citation

Choose an application

Abstract

Microtechnology has changed our world since the last century, when silicon microelectronics revolutionized sensor, control and communication areas, with applications extending from domotics to automotive, and from security to biomedicine. The present century, however, is also seeing an accelerating pace of innovation in glassy materials; as an example, glass-ceramics, which successfully combine the properties of an amorphous matrix with those of micro- or nano-crystals, offer a very high flexibility of design to chemists, physicists and engineers, who can conceive and implement advanced microdevices. In a very similar way, the synthesis of glassy polymers in a very wide range of chemical structures offers unprecedented potential of applications. The contemporary availability of microfabrication technologies, such as direct laser writing or 3D printing, which add to the most common processes (deposition, lithography and etching), facilitates the development of novel or advanced microdevices based on glassy materials. Biochemical and biomedical sensors, especially with the lab-on-a-chip target, are one of the most evident proofs of the success of this material platform. Other applications have also emerged in environment, food, and chemical industries. The present Special Issue of Micromachines aims at reviewing the current state-of-the-art and presenting perspectives of further development. Contributions related to the technologies, glassy materials, design and fabrication processes, characterization, and, eventually, applications are welcome.

Keywords

micro-crack propagation --- severing force --- quartz glass --- micro-grinding --- microfluidics --- single-cell analysis --- polymeric microfluidic flow cytometry --- single-cell protein quantification --- glass molding process --- groove --- roughness --- filling ratio --- label-free sensor --- optofluidic microbubble resonator --- detection of small molecules --- chalcogenide glass --- infrared optics --- precision glass molding --- aspherical lens --- freeform optics --- micro/nano patterning --- 2D colloidal crystal --- soft colloidal lithography --- strain microsensor --- vectorial strain gauge --- compound glass --- microsphere --- resonator --- lasing --- sensing --- microresonator --- whispering gallery mode --- long period grating --- fiber coupling --- distributed sensing --- chemical/biological sensing --- direct metal forming --- glassy carbon micromold --- enhanced boiling heat transfer --- metallic microstructure --- microspheres --- microdevices --- glass --- polymers --- solar energy --- nuclear fusion --- thermal insulation --- sol-gel --- Ag nanoaggregates --- Yb3+ ions --- down-shifting --- photonic microdevices --- alkali cells --- MEMS vapor cells --- optical cells --- atomic spectroscopy --- microtechnology --- microfabrication --- MEMS --- microfluidic devices --- laser materials processing --- ultrafast laser micromachining --- ultrafast laser welding --- enclosed microstructures --- glass --- porous media --- fluid displacement --- spray pyrolysis technique --- dielectric materials --- luminescent materials --- photovoltaics --- frequency conversion --- device simulations --- europium --- luminescence --- hybrid materials --- microdevices --- light --- photon --- communications --- waveguides --- fibers --- biosensors --- microstructured optical fibers --- whispering gallery modes --- light localization --- optofluidics --- lab-on-a-chip --- femtosecond laser --- laser micromachining --- diffusion

MEMS Technology for Biomedical Imaging Applications

Authors: ---
ISBN: 9783039216048 9783039216055 Year: Pages: 218 DOI: 10.3390/books978-3-03921-605-5 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

Biomedical imaging is the key technique and process to create informative images of the human body or other organic structures for clinical purposes or medical science. Micro-electro-mechanical systems (MEMS) technology has demonstrated enormous potential in biomedical imaging applications due to its outstanding advantages of, for instance, miniaturization, high speed, higher resolution, and convenience of batch fabrication. There are many advancements and breakthroughs developing in the academic community, and there are a few challenges raised accordingly upon the designs, structures, fabrication, integration, and applications of MEMS for all kinds of biomedical imaging. This Special Issue aims to collate and showcase research papers, short commutations, perspectives, and insightful review articles from esteemed colleagues that demonstrate: (1) original works on the topic of MEMS components or devices based on various kinds of mechanisms for biomedical imaging; and (2) new developments and potentials of applying MEMS technology of any kind in biomedical imaging. The objective of this special session is to provide insightful information regarding the technological advancements for the researchers in the community.

Keywords

tilted microcoil --- electromagnetically-driven --- surface micromachining --- polyimide capillary --- MEMS --- ego-motion estimation --- indoor navigation --- monocular camera --- scale ambiguity --- wearable sensors --- photoacoustic --- microelectromechanical systems (MEMS) --- miniaturized microscope --- lead-free piezoelectric materials --- high frequency ultrasonic transducer --- needle-type --- high spatial resolution --- ultrahigh frequency ultrasonic transducer --- Si lens --- tight focus --- finite element simulation --- low noise amplifier (LNA) --- noise figure --- smart hydrogels --- bio-sensors --- chemo-sensor --- electrochemical sensors --- transduction techniques --- near-field microwave --- microwave resonator --- microwave remote sensing --- potentiometric sensor --- gold nanoparticles --- metal oxide field-effect transistor --- chemo-FET --- bio-FET --- photoacoustic imaging --- microelectromechanical systems (MEMS) --- MEMS scanning mirror --- micromachined US transducer --- microring resonator --- acoustic delay line --- MEMS mirror --- Lissajous scanning --- pseudo-resonant --- sensing --- imaging --- display --- MEMS actuators --- microendoscopy --- confocal --- two-photon --- wide-filed imaging --- photoacoustic --- fluorescence --- scanner --- capacitive micromachined ultrasonic transducer (CMUT) --- acoustics --- micromachining --- capacitive --- transducer --- modelling --- fabrication --- 3D Printing --- piezoelectric array --- ultrasonic transducer --- ultrasonic imaging --- micro-optics --- bioimaging --- microtechnology --- microelectromechanical systems (MEMS) --- in vitro --- in vivo --- cantilever waveguide --- electrostatic actuator --- non-resonating scanner --- optical scanner --- push-pull actuator --- rib waveguide --- n/a

Quantum Probability and Randomness

Authors: ---
ISBN: 9783038977148 9783038977155 Year: Pages: 276 DOI: 10.3390/books978-3-03897-715-5 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Physics (General)
Added to DOAB on : 2019-04-25 16:37:17
License:

Loading...
Export citation

Choose an application

Abstract

The last few years have been characterized by a tremendous development of quantum information and probability and their applications, including quantum computing, quantum cryptography, and quantum random generators. In spite of the successful development of quantum technology, its foundational basis is still not concrete and contains a few sandy and shaky slices. Quantum random generators are one of the most promising outputs of the recent quantum information revolution. Therefore, it is very important to reconsider the foundational basis of this project, starting with the notion of irreducible quantum randomness. Quantum probabilities present a powerful tool to model uncertainty. Interpretations of quantum probability and foundational meaning of its basic tools, starting with the Born rule, are among the topics which will be covered by this issue. Recently, quantum probability has started to play an important role in a few areas of research outside quantum physics&mdash;in particular, quantum probabilistic treatment of problems of theory of decision making under uncertainty. Such studies are also among the topics of this issue.

Keywords

quantum logic --- groups --- partially defined algebras --- quasigroups --- viable cultures --- quantum information theory --- bit commitment --- protocol --- entropy --- entanglement --- orthogonality --- quantum computation --- Gram–Schmidt process --- quantum probability --- potentiality --- complementarity --- uncertainty relations --- Copenhagen interpretation --- indefiniteness --- indeterminism --- causation --- randomness --- quantum information --- quantum dynamics --- entanglement --- algebra --- causality --- geometry --- probability --- quantum information theory --- realism --- reality --- entropy --- correlations --- qubits --- probability representation --- Bayes’ formula --- quantum entanglement --- three-qubit random states --- entanglement classes --- entanglement polytope --- anisotropic invariants --- quantum random number --- vacuum state --- maximization of quantum conditional min-entropy --- quantum logics --- quantum probability --- holistic semantics --- epistemic operations --- Bell inequalities --- algorithmic complexity --- Borel normality --- Bayesian inference --- model selection --- random numbers --- quantum-like models --- operational approach --- information interpretation of quantum theory --- social laser --- social energy --- quantum information field --- social atom --- Bose–Einstein statistics --- bandwagon effect --- social thermodynamics --- resonator of social laser --- master equation for socio-information excitations --- quantum contextuality --- Kochen–Specker sets --- MMP hypergraphs --- Greechie diagrams --- quantum foundations --- probability --- irreducible randomness --- random number generators --- quantum technology --- entanglement --- quantum-like models for social stochasticity --- contextuality

Humidity Sensors. Advances in Reliability, Calibration and Application

Authors: --- ---
ISBN: 9783039211227 9783039211234 Year: Pages: 198 DOI: 10.3390/books978-3-03921-123-4 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

Humidity detection has deep significance for the scientific research surrounding medical care and human performance, and the industrial development of agriculture, geography and automated instruments. This special issue aims to showcase some of the advancements in humidity sensor design and calibration, and its applications. The selected papers cover a variety of humidity sensor-related topics including material science, chemistry and industrial engineering. Through dedicated contributions from peer reviewers and the editorial team, this book aims to offers reader some insight into the field of humidity sensor development and use.

MEMS Sensors and Resonators

Author:
ISBN: 9783039288656 / 9783039288663 Year: Pages: 164 DOI: 10.3390/books978-3-03928-866-3 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Microelectromechanical systems (MEMS) have had a profound impact on a wide range of applications. The degree of miniaturization made possible by MEMS technology has significantly improved the functionalities of many systems, and the performance of MEMS has steadily improved as its uses augment. Notably, MEMS sensors have been prevalent in motion sensing applications for decades, and the sensing mechanisms leveraged by MEMS have been continuously extended to applications spanning the detection of gases, magnetic fields, electromagnetic radiation, and more. In parallel, MEMS resonators have become an emerging field of MEMS and affected subfields such as electronic timing and filtering, and energy harvesting. They have, in addition, enabled a wide range of resonant sensors. For many years now, MEMS have been the basis of various industrial successes, often building on novel academic research. Accordingly, this Special Issue explores many research innovations in MEMS sensors and resonators, from biomedical applications to energy harvesting, gas sensing, resonant sensing, and timing.

Listing 1 - 10 of 16 << page
of 2
>>
Sort by
Narrow your search