Search results: Found 11

Listing 1 - 10 of 11 << page
of 2
>>
Sort by
Understanding the Global Energy Crisis

Authors: ---
Book Series: Purdue Studies in Public Policy ISBN: 9781557536617 9781612493091 9781612493107 9781557537010 Year: Pages: 318 DOI: 10.26530/OAPEN_469619 Language: English
Publisher: Purdue University Press Grant: Knowledge Unlatched
Subject: Political Science
Added to DOAB on : 2014-03-29 09:14:34
License:

Loading...
Export citation

Choose an application

Abstract

Central issues in global energy are discussed through interdisciplinary dialogue between experts from both North America and Europe with overview from historical, political, and socio-cultural perspectives, outlining the technology and policy issues facing the development of major conventional and renewable energy sources. We are facing a global energy crisis caused by world population growth, an escalating increase in demand, and continued dependence on fossil-based fuels for generation. It is widely accepted that increases in greenhouse gas concentration levels, if not reversed, will result in major changes to world climate with consequential effects on our society and economy. This is just the kind of intractable problem that Purdue University’s Global Policy Research Institute seeks to address in the Purdue Studies in Public Policy series by promoting the engagement between policy makers and experts in fields such as engineering and technology.&#xD; &#xD;Major steps forward in the development and use of technology are required. In order to achieve solutions of the required scale and magnitude within a limited timeline, it is essential that engineers be not only technologically-adept but also aware of the wider social and political issues that policy-makers face. Likewise, it is also imperative that policy makers liaise closely with the academic community in order to realize advances. This book is designed to bridge the gap between these two groups, with a particular emphasis on educating the socially-conscious engineers and technologists of the future.&#xD; &#xD;In this accessibly-written volume, central issues in global energy are discussed through interdisciplinary dialogue between experts from both North America and Europe. The first section provides an overview of the nature of the global energy crisis approached from historical, political, and sociocultural perspectives. In the second section, expert contributors outline the technology and policy issues facing the development of major conventional and renewable energy sources. The third and final section explores policy and technology challenges and opportunities in the distribution and consumption of energy, in sectors such as transportation and the built environment. The book’s epilogue suggests some future scenarios in energy distribution and use. &#xD;&#xD;This title was made Open Access by libraries from around the world through Knowledge Unlatched.

Enhancing Future Skills and Entrepreneurship

Authors: ---
Book Series: Sustainable Production, Life Cycle Engineering and Management ISBN: 9783030442484 Year: Pages: 292 DOI: 10.1007/978-3-030-44248-4 Language: English
Publisher: Springer Nature
Subject: Agriculture (General) --- Education
Added to DOAB on : 2020-09-01 00:02:19
License:

Loading...
Export citation

Choose an application

Abstract

This open access book presents the proceedings of the 3rd Indo-German Conference on Sustainability in Engineering held at Birla Institute of Technology and Science, Pilani, India, on September 16–17, 2019. Intended to foster the synergies between research and education, the conference is one of the joint activities of the BITS Pilani and TU Braunschweig conducted under the auspices of Indo-German Center for Sustainable Manufacturing, established in 2009. The book is divided into three sections: engineering, education and entrepreneurship, covering a range of topics, such as renewable energy forecasting, design & simulation, Industry 4.0, and soft & intelligent sensors for energy efficiency. It also includes case studies on lean and green manufacturing, and life cycle analysis of ceramic products, as well as papers on teaching/learning methods based on the use of learning factories to improve students’problem-solving and personal skills. Moreover, the book discusses high-tech ideas to help the large number of unemployed engineering graduates looking for jobs become tech entrepreneurs. Given its broad scope, it will appeal to academics and industry professionals alike.

European Guide to Power System Testing

Authors: --- ---
ISBN: 9783030422745 Year: Pages: 132 DOI: 10.1007/978-3-030-42274-5 Language: English
Publisher: Springer Nature
Subject: Agriculture (General)
Added to DOAB on : 2020-06-17 00:00:25
License:

Loading...
Export citation

Choose an application

Abstract

This book is an open access book. This book provides an overview of the ERIGrid validation methodology for validating CPES, a holistic power system testing method. It introduces readers to corresponding simulation and laboratory-based tools, including co-simulation, real-time simulation, and hardware-in-the-loop. Selected test cases and validation examples are provided, in order to support the theory discussed. The book begins with an introduction to current power system testing methods and an overview of the ERIGrid system-level validation approach. It then moves on to discuss various validation methods, concepts and tools, including simulation and laboratory-based assessment methods. The book presents test cases and validation examples of the proposed methodologies and summarises the lessons learned from the holistic validation approach. In the final section of the book, the educational aspects of these methods, the outlook for the future, and overall conclusions are discussed. Given its scope, the book will be of interest to researchers, engineers, and laboratory personnel in the fields of power systems and smart grids, as well as undergraduate and graduate students studying related engineering topics.

Analysis and Design of Hybrid Energy Storage Systems

Author:
ISBN: 9783039286867 / 9783039286874 Year: Pages: 180 DOI: 10.3390/books978-3-03928-687-4 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

The most important environmental challenge today's society is facing is to reduce the effects of CO2 emissions and global warming. Such an ambitious challenge can only be achieved through a holistic approach, capable of tackling the problem from a multidisciplinary point of view. One of the core technologies called to play a critical role in this approach is the use of energy storage systems. These systems enable, among other things, the balancing of the stochastic behavior of Renewable Sources and Distributed Generation in modern Energy Systems; the efficient supply of industrial and consumer loads; the development of efficient and clean transport; and the development of Nearly-Zero Energy Buildings (nZEB) and intelligent cities. Hybrid Energy Storage Systems (HESS) consist of two (or more) storage devices with complementary key characteristics, that are able to behave jointly with better performance than any of the technologies considered individually. Recent developments in storage device technologies, interface systems, control and monitoring techniques, or visualization and information technologies have driven the implementation of HESS in many industrial, commercial and domestic applications. This Special Issue focuses on the analysis, design and implementation of hybrid energy storage systems across a broad spectrum, encompassing different storage technologies (including electrochemical, capacitive, mechanical or mechanical storage devices), engineering branches (power electronics and control strategies; energy engineering; energy engineering; chemistry; modelling, simulation and emulation techniques; data analysis and algorithms; social and economic analysis; intelligent and Internet-of-Things (IoT) systems; and so on.), applications (energy systems, renewable energy generation, industrial applications, transportation, Uninterruptible Power Supplies (UPS) and critical load supply, etc.) and evaluation and performance (size and weight benefits, efficiency and power loss, economic analysis, environmental costs, etc.).

100% Renewable Energy Transition: Pathways and Implementation

Authors: --- ---
ISBN: 9783039280346 9783039280353 Year: Pages: 356 DOI: 10.3390/books978-3-03928-035-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering --- Technology (General)
Added to DOAB on : 2020-01-30 16:39:46
License:

Loading...
Export citation

Choose an application

Abstract

Energy markets are already undergoing considerable transitions to accommodate new (renewable) energy forms, new (decentral) energy players, and new system requirements, e.g. flexibility and resilience. Traditional energy markets for fossil fuels are therefore under pressure, while not-yet-mature (renewable) energy markets are emerging. As a consequence, investments in large-scale and capital intensive (traditional) energy production projects are surrounded by high uncertainty, and are difficult to hedge by private entities. Traditional energy production companies are transforming into energy service suppliers and companies aggregating numerous potential market players are emerging, while regulation and system management are playing an increasing role. To address these increasing uncertainties and complexities, economic analysis, forecasting, modeling and investment assessment require fresh approaches and views. Novel research is thus required to simulate multiple actor interplays and idiosyncratic behavior. The required approaches cannot deal only with energy supply, but need to include active demand and cover systemic aspects. Energy market transitions challenge policy-making. Market coordination failure, the removal of barriers hindering restructuring and the combination of market signals with command-and-control policy measures are some of the new aims of policies.The aim of this Special Issue is to collect research papers that address the above issues using novel methods from any adequate perspective, including economic analysis, modeling of systems, behavioral forecasting, and policy assessment.The issue will include, but is not be limited to: Local control schemes and algorithms for distributed generation systems; Centralized and decentralized sustainable energy management strategies; Communication architectures, protocols and properties of practical applications; Topologies of distributed generation systems improving flexibility, efficiency and power quality; Practical issues in the control design and implementation of distributed generation systems; Energy transition studies for optimized pathway options aiming for high levels of sustainability

Keywords

energy system modelling --- storage solutions --- 100% renewable energy --- Åland --- vehicle-to-grid --- power-to-gas --- blockchain --- community --- energy market --- electric vehicle --- Demand Response --- gamification --- microgeneration --- renewable energy --- energy system modeling --- decarbonization --- global energy system model (GENeSYS-MOD) --- renewables --- India --- energy transformation --- energy transition --- sector coupling --- microgrid --- microgrid by design --- energy community --- net metering --- prosumer --- regulation --- resilience --- immunity --- Solid State Transformer --- electrostatic-driven inertia --- variable renewable energy sources --- wind power --- solar energy --- Germany --- pumped hydro storage --- system-friendly renewables --- energy storage --- ship’s electrical power system --- dynamic positioning --- blackout prevention --- maritime transportation --- energy system optimisation --- carbon dioxide reduction --- renewable energy --- sector-coupling --- open energy modelling --- market value --- decarbonization --- energy system modeling --- GENeSYS-MOD --- renewables --- energy policy --- energy transformation --- Energiewende --- European electricity system --- interconnector capacities --- delayed grid expansion --- electricity market modeling --- decarbonization --- renewable integration --- renewable transition --- numeric modelling --- Mexico --- climate policies --- energy transition --- energy policy --- GENeSYS-MOD --- island energy system transition --- 100% RE pathways --- RE integration --- smart grid technologies --- energy sector integration --- smart energy system --- Samsø --- Orkney --- Madeira --- transport sector --- transportation demand --- final energy demand --- road --- rail --- marine --- aviation --- levelized cost of mobility --- greenhouse gas emissions --- electrification --- agent-based modelling --- flexibility --- renewable energy --- electricity markets

Smart Energy Management for Smart Grids

Authors: ---
ISBN: 9783039281428 9783039281435 Year: Pages: 350 DOI: 10.3390/books978-3-03928-143-5 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

This book is a contribution from the authors, to share solutions for a better and sustainable power grid. Renewable energy, smart grid security and smart energy management are the main topics discussed in this book.

Keywords

seawater pumped storage --- renewable energy --- active distribution networks --- two-stage --- scheduling --- distributed generation --- storage device --- MILP --- ToU tariff --- optimization --- daily consumption curve --- peak/off-peak --- programmable appliances --- smart grid --- smart energy --- sustainability --- values --- technology acceptance --- technology adoption --- smart grid --- Smart Grid Station --- renewable energy sources --- energy management system --- smart metering --- feedback --- households --- energy and water consumption --- theories of social practice --- smart grid --- differentiation --- development demand --- comprehensive evaluation --- energy management system --- energy storage system --- semantic web technologies --- rules --- ontology --- engineering support --- smart grid architecture model --- model driven architecture --- IEC 61850 --- IEC 61499 --- energy storage system --- electricity charge discount program --- peak reduction --- economic feasibility analysis --- policy effectiveness evaluation --- occupant behavior --- single-person household --- energy consumption --- Korean Time Use Survey --- EnergyPlus --- data mining --- K-modes clustering --- support vector machine --- Gaussian process regression --- combined dispatch (CD) strategy --- optimization --- HOMER --- net present cost (NPC) --- sensitivity analysis --- renewable energy --- solar power generation prediction --- smart grid --- photovoltaic power --- machine learning --- electrical distribution system --- graph theory --- micro grids --- heuristic --- optimization --- planning --- unbalanced three-phase distribution networks --- optimal power flows --- genetic algorithm --- holomorphic embedding load flow method --- simulation --- forecasting --- solar generation --- storage capacity --- game theory --- nash equilibrium --- distributed energy management algorithm --- micro grid --- meta heuristic techniques --- R&amp --- D planning --- patent analysis --- sustainable smart grid technology --- R&amp --- D strategy --- STEEP analysis --- scenario planning --- electric vehicle charging technology --- multilayer perceptron neural network --- support vector machine --- cyberattacks --- optimal power flow --- smart grid security --- intruder detection system

Optimization Methods Applied to Power Systems: Volume 1

Authors: ---
ISBN: 9783039211302 9783039211319 Year: Pages: 382 DOI: 10.3390/books978-3-03921-131-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

This book presents an interesting sample of the latest advances in optimization techniques applied to electrical power engineering. It covers a variety of topics from various fields, ranging from classical optimization such as Linear and Nonlinear Programming and Integer and Mixed-Integer Programming to the most modern methods based on bio-inspired metaheuristics. The featured papers invite readers to delve further into emerging optimization techniques and their real application to case studies such as conventional and renewable energy generation, distributed generation, transport and distribution of electrical energy, electrical machines and power electronics, network optimization, intelligent systems, advances in electric mobility, etc.

Keywords

Cable joint --- internal defect --- thermal probability density --- power system optimization --- optimal power flow --- developed grew wolf optimizer --- energy internet --- prosumer --- energy management --- consensus --- demand response --- day-ahead load forecasting --- modular predictor --- feature selection --- micro-phasor measurement unit --- mutual information theory --- stochastic state estimation --- two-point estimation method --- JAYA algorithm --- multi-population method (MP) --- chaos optimization algorithm (COA) --- economic load dispatch problem (ELD) --- optimization methods --- constrained parameter estimation --- extended Kalman filter --- power systems --- C&I particle swarm optimization --- ringdown detection --- optimal reactive power dispatch --- loss minimization --- voltage deviation --- hybrid method --- tabu search --- particle swarm optimization --- artificial lighting --- simulation --- calibration --- radiance --- GenOpt --- street light points --- DC optimal power flow --- power transfer distribution factors --- generalized generation distribution factors --- unit commitment --- adaptive consensus algorithm --- distributed heat-electricity energy management --- eight searching sub-regions --- islanded microgrid --- dragonfly algorithm --- metaheuristic --- optimal power flow --- particle swarm optimization --- CCHP system --- energy storage --- off-design performance --- dynamic solving framework --- battery energy storage system --- micro grid --- MILP --- PCS efficiency --- piecewise linear techniques --- renewable energy sources --- optimal operation --- UC --- demand bidding --- demand response --- genetic algorithm --- load curtailment --- optimization --- hybrid renewable energy system --- pumped-hydro energy storage --- off-grid --- optimization --- HOMER software --- rural electrification --- sub-Saharan Africa --- Cameroon --- building energy management system --- HVAC system --- energy storage system --- energy flow model --- dependability --- sustainability --- data center --- power architectures --- optimization --- AC/DC hybrid active distribution --- hierarchical scheduling --- multi-stakeholders --- discrete wind driven optimization --- multiobjective optimization --- optimal power flow --- metaheuristic --- wind energy --- photovoltaic --- smart grid --- transformer-fault diagnosis --- principal component analysis --- particle swarm optimization --- support vector machine --- wind power --- integration assessment --- interactive load --- considerable decomposition --- controllable response --- SOCP relaxations --- optimal power flow --- current margins --- affine arithmetic --- interval variables --- optimizing-scenarios method --- power flow --- wind power --- active distribution system --- virtual power plant --- stochastic optimization --- decentralized and collaborative optimization --- genetic algorithm --- multi-objective particle swarm optimization algorithm --- artificial bee colony --- IEEE Std. 80-2000 --- Schwarz’s equation --- fuzzy algorithm --- radial basis function --- neural network --- ETAP --- distributed generations (DGs) --- distribution network reconfiguration --- runner-root algorithm (RRA) --- inter-turn shorted-circuit fault (ISCF) --- strong track filter (STF) --- linear discriminant analysis (LDA) --- switched reluctance machine (SRM) --- charging/discharging --- electric vehicle --- energy management --- genetic algorithm --- intelligent scatter search --- electric vehicles --- heterogeneous networks --- demand uncertainty --- power optimization --- Stackelberg game --- power system unit commitment --- hybrid membrane computing --- cross-entropy --- the genetic algorithm based P system --- the biomimetic membrane computing --- transient stability --- two-stage feature selection --- particle encoding method --- fitness function --- power factor compensation --- non-sinusoidal circuits --- geometric algebra --- evolutionary algorithms --- electric power contracts --- electric energy costs --- cost minimization --- evolutionary computation --- bio-inspired algorithms --- congestion management --- low-voltage networks --- multi-objective particle swarm optimization --- affinity propagation clustering --- optimal congestion threshold --- optimization --- magnetic field mitigation --- overhead --- underground --- passive shielding --- active shielding --- MV/LV substation --- n/a

Optimization Methods Applied to Power Systems: Volume 2

Authors: ---
ISBN: 9783039211562 9783039211579 Year: Pages: 306 DOI: 10.3390/books978-3-03921-157-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

This book presents an interesting sample of the latest advances in optimization techniques applied to electrical power engineering. It covers a variety of topics from various fields, ranging from classical optimization such as Linear and Nonlinear Programming and Integer and Mixed-Integer Programming to the most modern methods based on bio-inspired metaheuristics. The featured papers invite readers to delve further into emerging optimization techniques and their real application to case studies such as conventional and renewable energy generation, distributed generation, transport and distribution of electrical energy, electrical machines and power electronics, network optimization, intelligent systems, advances in electric mobility, etc.

Keywords

Cable joint --- internal defect --- thermal probability density --- power system optimization --- optimal power flow --- developed grew wolf optimizer --- energy internet --- prosumer --- energy management --- consensus --- demand response --- day-ahead load forecasting --- modular predictor --- feature selection --- micro-phasor measurement unit --- mutual information theory --- stochastic state estimation --- two-point estimation method --- JAYA algorithm --- multi-population method (MP) --- chaos optimization algorithm (COA) --- economic load dispatch problem (ELD) --- optimization methods --- constrained parameter estimation --- extended Kalman filter --- power systems --- C&I particle swarm optimization --- ringdown detection --- optimal reactive power dispatch --- loss minimization --- voltage deviation --- hybrid method --- tabu search --- particle swarm optimization --- artificial lighting --- simulation --- calibration --- radiance --- GenOpt --- street light points --- DC optimal power flow --- power transfer distribution factors --- generalized generation distribution factors --- unit commitment --- adaptive consensus algorithm --- distributed heat-electricity energy management --- eight searching sub-regions --- islanded microgrid --- dragonfly algorithm --- metaheuristic --- optimal power flow --- particle swarm optimization --- CCHP system --- energy storage --- off-design performance --- dynamic solving framework --- battery energy storage system --- micro grid --- MILP --- PCS efficiency --- piecewise linear techniques --- renewable energy sources --- optimal operation --- UC --- demand bidding --- demand response --- genetic algorithm --- load curtailment --- optimization --- hybrid renewable energy system --- pumped-hydro energy storage --- off-grid --- optimization --- HOMER software --- rural electrification --- sub-Saharan Africa --- Cameroon --- building energy management system --- HVAC system --- energy storage system --- energy flow model --- dependability --- sustainability --- data center --- power architectures --- optimization --- AC/DC hybrid active distribution --- hierarchical scheduling --- multi-stakeholders --- discrete wind driven optimization --- multiobjective optimization --- optimal power flow --- metaheuristic --- wind energy --- photovoltaic --- smart grid --- transformer-fault diagnosis --- principal component analysis --- particle swarm optimization --- support vector machine --- wind power --- integration assessment --- interactive load --- considerable decomposition --- controllable response --- SOCP relaxations --- optimal power flow --- current margins --- affine arithmetic --- interval variables --- optimizing-scenarios method --- power flow --- wind power --- active distribution system --- virtual power plant --- stochastic optimization --- decentralized and collaborative optimization --- genetic algorithm --- multi-objective particle swarm optimization algorithm --- artificial bee colony --- IEEE Std. 80-2000 --- Schwarz’s equation --- fuzzy algorithm --- radial basis function --- neural network --- ETAP --- distributed generations (DGs) --- distribution network reconfiguration --- runner-root algorithm (RRA) --- inter-turn shorted-circuit fault (ISCF) --- strong track filter (STF) --- linear discriminant analysis (LDA) --- switched reluctance machine (SRM) --- charging/discharging --- electric vehicle --- energy management --- genetic algorithm --- intelligent scatter search --- electric vehicles --- heterogeneous networks --- demand uncertainty --- power optimization --- Stackelberg game --- power system unit commitment --- hybrid membrane computing --- cross-entropy --- the genetic algorithm based P system --- the biomimetic membrane computing --- transient stability --- two-stage feature selection --- particle encoding method --- fitness function --- power factor compensation --- non-sinusoidal circuits --- geometric algebra --- evolutionary algorithms --- electric power contracts --- electric energy costs --- cost minimization --- evolutionary computation --- bio-inspired algorithms --- congestion management --- low-voltage networks --- multi-objective particle swarm optimization --- affinity propagation clustering --- optimal congestion threshold --- optimization --- magnetic field mitigation --- overhead --- underground --- passive shielding --- active shielding --- MV/LV substation --- n/a

Methods and Concepts for Designing and Validating Smart Grid Systems

Authors: --- ---
ISBN: 9783039216482 9783039216499 Year: Pages: 408 DOI: 10.3390/books978-3-03921-649-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 16:10:12
License:

Loading...
Export citation

Choose an application

Abstract

Energy efficiency and low-carbon technologies are key contributors to curtailing the emission of greenhouse gases that continue to cause global warming. The efforts to reduce greenhouse gas emissions also strongly affect electrical power systems. Renewable sources, storage systems, and flexible loads provide new system controls, but power system operators and utilities have to deal with their fluctuating nature, limited storage capabilities, and typically higher infrastructure complexity with a growing number of heterogeneous components. In addition to the technological change of new components, the liberalization of energy markets and new regulatory rules bring contextual change that necessitates the restructuring of the design and operation of future energy systems. Sophisticated component design methods, intelligent information and communication architectures, automation and control concepts, new and advanced markets, as well as proper standards are necessary in order to manage the higher complexity of such intelligent power systems that form smart grids. Due to the considerably higher complexity of such cyber-physical energy systems, constituting the power system, automation, protection, information and communication technology (ICT), and system services, it is expected that the design and validation of smart-grid configurations will play a major role in future technology and system developments. However, an integrated approach for the design and evaluation of smart-grid configurations incorporating these diverse constituent parts remains evasive. The currently available validation approaches focus mainly on component-oriented methods. In order to guarantee a sustainable, affordable, and secure supply of electricity through the transition to a future smart grid with considerably higher complexity and innovation, new design, validation, and testing methods appropriate for cyber-physical systems are required. Therefore, this book summarizes recent research results and developments related to the design and validation of smart grid systems.

Keywords

adaptive control --- fuzzy logic --- cell --- frequency containment control (FCC) --- power frequency characteristic --- droop control --- smart grids --- substation automation system (SAS) --- high-availability seamless redundancy (HSR) --- seamless communications --- traffic reduction technique --- Power Hardware-in-the-Loop (PHIL) --- interface algorithm (IA) --- operational range of PHIL --- linear/switching amplifier --- cyber-physical energy system --- co-simulation --- conceptual structuration --- coupling method --- linear decision rules --- optimal reserve allocation --- robust optimization --- web of cells --- demand response --- real-time balancing market --- elastic demand bids --- shiftable loads --- market design --- market design elements --- Web-of-Cells --- procurement scheme --- remuneration scheme --- pricing scheme --- cascading procurement --- real-time simulation --- hardware-in-the-Loop --- synchrophasors --- micro-synchrophasors --- distribution phasor measurement units --- distribution grid --- time synchronization --- PHIL (power hardware in the loop) --- simulation initialization --- synchronization --- time delay --- synchronous power system --- stability --- accuracy --- peer-to-peer --- distributed control --- device-to-device communication --- voltage control --- experimentation --- smart grid --- cyber physical co-simulation --- information and communication technology --- 4G Long Term Evolution—LTE --- network reconfiguration --- fault management --- power loss allocation --- plug-in electric vehicle --- smart grid --- locational marginal prices --- microgrid --- resilience --- investment --- underground cabling --- network outage --- battery energy storage system (BESS) --- micro combined heat and power (micro-CHP) --- electricity distribution --- solar photovoltaics (PV) --- islanded operation --- distributed control --- microgrid --- hardware-in-the-loop --- average consensus --- multi-agent system --- active distribution network --- laboratory testbed --- renewable energy sources --- DC link --- centralised control --- interoperability --- smart energy systems --- use cases --- IEC 62559 --- SGAM --- TOGAF --- integration profiles --- IHE --- testing --- gazelle --- connectathon --- Hardware-in-the-Loop --- Software-in-the-Loop --- Power-Hardware-in-the-Loop --- Quasi-Dynamic Power-Hardware-in-the-Loop --- smart grids --- real-time simulation --- validation and testing --- decentralised energy system --- smart grids control strategies --- smart grid --- wind power --- synchronized measurements --- PMU --- data mining --- Architecture --- Development --- Enterprise Architecture Management --- Model-Based Software Engineering --- Smart Grid --- Smart Grid Architecture Model --- System-of-Systems --- Validation --- design, development and implementation methods for smart grid technologies --- modelling and simulation of smart grid systems --- co-simulation-based assessment methods --- validation techniques for innovative smart grid solutions --- real-time simulation and hardware-in-the-loop experiments

Applications of Power Electronics

Authors: --- ---
ISBN: 9783038979746 9783038979753 Year: Volume: 1 Pages: 476 DOI: 10.3390/books978-3-03897-975-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering --- Technology (General)
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Power electronics technology is still an emerging technology, and it has found its way into many applications, from renewable energy generation (i.e., wind power and solar power) to electrical vehicles (EVs), biomedical devices, and small appliances, such as laptop chargers. In the near future, electrical energy will be provided and handled by power electronics and consumed through power electronics; this not only will intensify the role of power electronics technology in power conversion processes, but also implies that power systems are undergoing a paradigm shift, from centralized distribution to distributed generation. Today, more than 1000 GW of renewable energy generation sources (photovoltaic (PV) and wind) have been installed, all of which are handled by power electronics technology. The main aim of this book is to highlight and address recent breakthroughs in the range of emerging applications in power electronics and in harmonic and electromagnetic interference (EMI) issues at device and system levels as discussed in ?robust and reliable power electronics technologies, including fault prognosis and diagnosis technique stability of grid-connected converters and ?smart control of power electronics in devices, microgrids, and at system levels.

Keywords

energy storage --- lithium-ion battery --- battery management system BMS --- battery modeling --- state of charge SoC --- grid-connected inverter --- power electronics --- multi-objective optimization --- switching frequency --- total demand distortion --- switching losses --- EMI filter --- power converter --- power density --- optimal design --- electrical drives --- axial flux machines --- magnetic equivalent circuit --- torque ripple --- back EMF --- permanent-magnet machines --- five-phase permanent magnet synchronous machine --- five-leg voltage source inverter --- multiphase space vector modulation --- sliding mode control --- extended Kalman filter --- voltage source inverters (VSI) --- voltage control --- current control --- digital control --- predictive controllers --- advanced controllers --- stability --- response time --- lithium-ion batteries --- electric vehicles --- battery management system --- electric power --- dynamic PV model --- grid-connected VSI --- HF-link MPPT converter --- nanocrystalline core --- SiC PV Supply --- DC–DC converters --- multi-level control --- renewable energy resources control --- electrical engineering communications --- microgrid control --- distributed control --- power system operation and control --- variable speed pumped storage system --- droop control --- vector control --- phasor model technique --- nine switch converter --- synchronous generator --- digital signal controller --- static compensator, distribution generation --- hybrid converter --- multi-level converter (MLC) --- series active filter --- power factor correction (PFC) --- field-programmable gate array --- particle swarm optimization --- selective harmonic elimination method --- voltage source converter --- plug-in hybrid electric vehicles --- power management system --- renewable energy sources --- fuzzy --- smart micro-grid --- five-phase machine --- fault-tolerant control --- induction motor --- one phase open circuit fault (1-Ph) --- adjacent two-phase open circuit fault (A2-Ph) --- volt-per-hertz control (scalar control) --- current-fed inverter --- LCL-S topology --- semi-active bridge --- soft switching --- voltage boost --- wireless power transfer --- DC–DC conversion --- zero-voltage switching (ZVS) --- transient control --- DC–DC conversion --- bidirectional converter --- power factor correction --- line frequency instability --- one cycle control --- non-linear phenomena --- bifurcation --- boost converter --- converter --- ice melting --- modular multilevel converter (MMC) --- optimization design --- transmission line --- static var generator (SVG) --- hardware-in-the-loop --- floating-point --- fixed-point --- real-time emulation --- field programmable gate array --- slim DC-link drive --- VPI active damping control --- total harmonic distortion --- cogging torque --- real-time simulation --- power converters --- nonlinear control --- embedded systems --- high level programing --- SHIL --- DHIL --- 4T analog MOS control --- high frequency switching power supply --- water purification --- modulation index --- electromagnetic interference --- chaotic PWM --- DC-DC buck converter --- CMOS chaotic circuit --- triangular ramp generator --- spread-spectrum technique --- system in package --- electric vehicle --- wireless power transfer --- inductive coupling --- coupling factor --- phase-shift control --- series-series compensation --- PSpice --- fixed-frequency double integral sliding-mode (FFDISM) --- class-D amplifier --- Q-factor --- GaN cascode --- direct torque control (DTC) --- composite active vectors modulation (CVM) --- permanent magnet synchronous motor (PMSM) --- effect factors --- double layer capacitor (DLC) models --- energy storage modelling --- simulation models --- current control loops --- dual three-phase (DTP) permanent magnet synchronous motors (PMSMs) --- space vector pulse width modulation (SVPWM) --- vector control --- voltage source inverter --- active rectifiers --- single-switch --- analog phase control --- digital phase control --- wireless power transfer --- three-level boost converter (TLBC) --- DC-link cascade H-bridge (DCLCHB) inverter --- conducting angle determination (CAD) techniques --- total harmonic distortion (THD) --- three-phase bridgeless rectifier --- fault diagnosis --- fault tolerant control --- hardware in loop --- compensation topology --- electromagnetic field (EMF) --- electromagnetic field interference (EMI) --- misalignment --- resonator structure --- wireless power transfer (WPT) --- WPT standards --- EMI filter --- electromagnetic compatibility --- AC–DC power converters --- electromagnetic interference filter --- matrix converters --- current source --- power density --- battery energy storage systems --- battery chargers --- active receivers --- frequency locking --- reference phase calibration --- synchronization --- wireless power transfer --- lithium-ion batteries --- SOC estimator --- parameter identification --- particle swarm optimization --- improved extended Kalman filter --- battery management system --- PMSG --- DC-link voltage control --- variable control gain --- disturbance observer --- lithium-ion power battery pack --- composite equalizer --- active equalization --- passive equalization --- control strategy and algorithm --- n/a --- common-mode inductor --- high-frequency modeling --- electromagnetic interference --- filter --- fault diagnosis --- condition monitoring --- induction machines --- support vector machines --- expert systems --- neural networks --- DC-AC power converters --- frequency-domain analysis --- impedance-based model --- Nyquist stability analysis --- small signal stability analysis --- harmonic linearization --- line start --- permanent magnet --- synchronous motor --- efficiency motor --- rotor design --- harmonics --- hybrid power filter --- active power filter --- power quality --- total harmonic distortion --- equivalent inductance --- leakage inductance --- switching frequency modelling --- induction motor --- current switching ripple --- multilevel inverter --- cascaded topology --- voltage doubling --- switched capacitor --- nearest level modulation (NLM) --- total harmonic distortion (THD) --- dead-time compensation --- power converters --- harmonics --- n/a

Listing 1 - 10 of 11 << page
of 2
>>
Sort by
Narrow your search