Search results: Found 10

Listing 1 - 10 of 10
Sort by
100 Years of Chronogeometrodynamics: The Status of the Einstein's Theory of Gravitation in Its Centennial Year

Authors: ---
ISBN: 9783038424826 9783038424833 Year: Pages: VIII, 462 DOI: 10.3390/books978-3-03842-483-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Physics (General)
Added to DOAB on : 2017-09-11 10:34:09
License:

Loading...
Export citation

Choose an application

Abstract

In 1692, Newton wrote: "That gravity should be innate, inherent and essential to matter so that one body may act upon another at a distance through a vacuum, without the mediation of anything else by and through which their action or force may be conveyed from one to another, is to me so great an absurdity that I believe no man who has in philosophical matters any competent faculty of thinking can ever fall into it. Gravity must be caused by an agent acting constantly according to certain laws, but whether this agent be material or immaterial is a question I have left to the consideration of my readers". One of them who, just over 200 years later, picked up the baton of Newton was Albert Einstein. His General Theory of Relativity, which had its centenary in 2015, opened up new windows on our comprehension of Nature, disclosed new, previously unpredictable, phenomena occurring when relative velocities dramatically change in intense gravitational fields reaching values close to the speed of light and, for the first time after millennia of speculations, put Cosmology on the firm grounds of empirically testable science. This Special Issue was dedicated to this grand achievement of the human thought.

Sprache und Kognition. Ereigniskonzeptualisierung im Deutschen und Tschechischen

Author:
Book Series: Konvergenz und Divergenz ISBN: 9783110615746 Year: Volume: 8 Pages: 308 DOI: 10.1515/9783110615746 Language: German
Publisher: De Gruyter
Subject: Linguistics
Added to DOAB on : 2018-11-14 18:42:56
License:

Loading...
Export citation

Choose an application

Abstract

Ist unser Denken und somit die Weltsicht für alle Menschen gleich oder sprachspezifisch? Auf diese uralte Fragestellung, der bereits Wilhelm von Humboldt nachgegangen ist, gibt dieses Buch eine eindeutig bejahende Antwort: Unsere Weltanschauung wird durch die Grammatik der eigenen Muttersprache(n) geprägt, sodass Menschen Ereignisse sprachspezifisch wahrnehmen, versprachlichen und auch erinnern. Diese grundlegenden Erkenntnisse sind durch den hier gewählten experimentellen Zugang psycholinguistischer Methoden (z.B. Eye-Tracking) erstmalig möglich.Der Einfluss von Sprache auf Kognition erweist sich darüber hinaus für Sprachkontakt als extrem relevant. Infolge des über Jahrhunderte andauernden Sprachkontakts zwischen dem Deutschen und Tschechischen hat sich das Aspekt-System des Tschechischen dahingehend geändert, dass die Ereigniskonzeptualisierung im Tschechischen wie im Deutschen verläuft und das Tschechische sich systematisch von anderen ost- und westslawischen Sprachen absetzt.

One Hundred Years of General Relativity:From Genesis and Empirical Foundations to Gravitational Waves, Cosmology and Quantum Gravity

Author:
ISBN: 9789814635134 Year: Volume: 1 Pages: 720 DOI: 10.1142/9389-vol1 Language: ENGLISH
Publisher: World Scientific Publishing Co.
Added to DOAB on : 2019-07-04 08:59:32

Loading...
Export citation

Choose an application

Abstract

The aim of this two-volume title is to give a comprehensive review of one hundred years of development of general relativity and its scientific influences. This unique title provides a broad introduction and review to the fascinating and profound subject of general relativity, its historical development, its important theoretical consequences, gravitational wave detection and applications to astrophysics and cosmology. The series focuses on five aspects of the theory:Genesis, Solutions and EnergyEmpirical FoundationsGravitational WavesCosmologyQuantum GravityThe first three topics are covered in Volume 1 and the remaining two are covered in Volume 2. While this is a two-volume title, it is designed so that each volume can be a standalone reference volume for the related topic.

One Hundred Years of General Relativity:From Genesis and Empirical Foundations to Gravitational Waves, Cosmology and Quantum Gravity

Author:
ISBN: 9789814678506 Year: Volume: 2 Pages: 636 DOI: 10.1142/9389-vol2 Language: ENGLISH
Publisher: World Scientific Publishing Co.
Added to DOAB on : 2019-07-04 09:01:47

Loading...
Export citation

Choose an application

Abstract

The aim of this two-volume title is to give a comprehensive review of one hundred years of development of general relativity and its scientific influences. This unique title provides a broad introduction and review to the fascinating and profound subject of general relativity, its historical development, its important theoretical consequences, gravitational wave detection and applications to astrophysics and cosmology. The series focuses on five aspects of the theory:Genesis, Solutions and EnergyEmpirical FoundationsGravitational WavesCosmologyQuantum GravityThe first three topics are covered in Volume 1 and the remaining two are covered in Volume 2. While this is a two-volume title, it is designed so that each volume can be a standalone reference volume for the related topic.

The Fourteenth Marcel Grossmann Meeting:On Recent Developments in Theoretical and Experimental General Relativity, Astrophysics, and Relativistic Field Theories (In 4 Volumes)

Authors: --- ---
ISBN: 9789813226609 Year: Pages: 1084 DOI: 10.1142/10614 Language: English
Publisher: World Scientific Publishing Co.
Added to DOAB on : 2017-11-20 08:45:58
License:

Loading...
Export citation

Choose an application

Abstract

The four volumes of the proceedings of MG14 give a broad view of all aspects of gravitational physics and astrophysics, from mathematical issues to recent observations and experiments. The scientific program of the meeting included 35 morning plenary talks over 6 days, 6 evening popular talks and 100 parallel sessions on 84 topics over 4 afternoons.Volume A contains plenary and review talks ranging from the mathematical foundations of classical and quantum gravitational theories including recent developments in string theory, to precision tests of general relativity including progress towards the detection of gravitational waves, and from supernova cosmology to relativistic astrophysics, including topics such as gamma ray bursts, black hole physics both in our galaxy and in active galactic nuclei in other galaxies, and neutron star, pulsar and white dwarf astrophysics.The remaining volumes include parallel sessions which touch on dark matter, neutrinos, X-ray sources, astrophysical black holes, neutron stars, white dwarfs, binary systems, radiative transfer, accretion disks, quasars, gamma ray bursts, supernovas, alternative gravitational theories, perturbations of collapsed objects, analog models, black hole thermodynamics, numerical relativity, gravitational lensing, large scale structure, observational cosmology, early universe models and cosmic microwave background anisotropies, inhomogeneous cosmology, inflation, global structure, singularities, chaos, Einstein-Maxwell systems, wormholes, exact solutions of Einstein's equations, gravitational waves, gravitational wave detectors and data analysis, precision gravitational measurements, quantum gravity and loop quantum gravity, quantum cosmology, strings and branes, self-gravitating systems, gamma ray astronomy, cosmic rays and the history of general relativity.

Radio Galaxies at TeV Energies

Author:
ISBN: 9783039287505 / 9783039287512 Year: Pages: 188 DOI: 10.3390/books978-3-03928-751-2 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Physics (General) --- Astronomy (General)
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

It is common believe that the centers of all galaxies exhibit supermassive black holes with masses ranging from millions up to billions of the mass of our Sun. By accreting surrounding matter, the luminosity of these galactic nuclei can outshine the emission of their host galaxies. If this is the case, they are called active galactic nuclei. Some of these objects eject powerful outflows composed of plasma, called jets. These jets can produce non-thermal radiation which observable across the entire electromagnetic spectrum from radio up to the gamma-ray frequencies. At highest frequencies (TeV range) most of the detected active galaxies have jets directed along or close to the line of sight. However, also galaxies with larger angles to the line of sight showing fascinating features were discovered, in seeming contradiction to traditional models for these so-called radio galaxies. Thus, the latter are of particular importance for understanding active galactic nuclei in general. This Special Issue contains reviews and research articles about the current knowledge of radio galaxies at TeV energies, including observational results and theoretical models. It is intended to guide the interested reader deeper into this fascinating discipline of modern day astronomy.

Stem Cell and Biologic Scaffold Engineering

Author:
ISBN: 9783039214976 9783039214983 Year: Pages: 110 DOI: 10.3390/books978-3-03921-498-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Tissue engineering and regenerative medicine is a rapidly evolving research field which effectively combines stem cells and biologic scaffolds in order to replace damaged tissues. Biologic scaffolds can be produced through the removal of resident cellular populations using several tissue engineering approaches, such as the decellularization method. Indeed, the decellularization method aims to develop a cell-free biologic scaffold while keeping the extracellular matrix (ECM) intact. Furthermore, biologic scaffolds have been investigated for their in vitro potential for whole organ development. Currently, clinical products composed of decellularized matrices, such as pericardium, urinary bladder, small intestine, heart valves, nerve conduits, trachea, and vessels, are being evaluated for use in human clinical trials. Tissue engineering strategies require the interaction of biologic scaffolds with cellular populations. Among them, stem cells are characterized by unlimited cell division, self-renewal, and differentiation potential, distinguishing themselves as a frontline source for the repopulation of decellularized matrices and scaffolds. Under this scheme, stem cells can be isolated from patients, expanded under good manufacturing practices (GMPs), used for the repopulation of biologic scaffolds and, finally, returned to the patient. The interaction between scaffolds and stem cells is thought to be crucial for their infiltration, adhesion, and differentiation into specific cell types. In addition, biomedical devices such as bioreactors contribute to the uniform repopulation of scaffolds. Until now, remarkable efforts have been made by the scientific society in order to establish the proper repopulation conditions of decellularized matrices and scaffolds. However, parameters such as stem cell number, in vitro cultivation conditions, and specific growth media composition need further evaluation. The ultimate goal is the development of “artificial” tissues similar to native ones, which is achieved by properly combining stem cells and biologic scaffolds and thus bringing them one step closer to personalized medicine. The original research articles and comprehensive reviews in this Special Issue deal with the use of stem cells and biologic scaffolds that utilize state-of-the-art tissue engineering and regenerative medicine approaches.

Cosmic Plasmas and Electromagnetic Phenomena

Authors: --- ---
ISBN: 9783039214655 9783039214662 Year: Pages: 264 DOI: 10.3390/books978-3-03921-466-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Physics (General) --- Astronomy (General)
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

During the past few decades, plasma science has witnessed a great growth in laboratory studies, in simulations, and in space. Plasma is the most common phase of ordinary matter in the universe. It is a state in which ionized matter (even as low as 1%) becomes highly electrically conductive. As such, long-range electric and magnetic fields dominate its behavior. Cosmic plasmas are mostly associated with stars, supernovae, pulsars and neutron stars, quasars and active galaxies at the vicinities of black holes (i.e., their jets and accretion disks). Cosmic plasma phenomena can be studied with different methods, such as laboratory experiments, astrophysical observations, and theoretical/computational approaches (i.e., MHD, particle-in-cell simulations, etc.). They exhibit a multitude of complex magnetohydrodynamic behaviors, acceleration, radiation, turbulence, and various instability phenomena. This Special Issue addresses the growing need of the plasma science principles in astrophysics and presents our current understanding of the physics of astrophysical plasmas, their electromagnetic behaviors and properties (e.g., shocks, waves, turbulence, instabilities, collimation, acceleration and radiation), both microscopically and macroscopically. This Special Issue provides a series of state-of-the-art reviews from international experts in the field of cosmic plasmas and electromagnetic phenomena using theoretical approaches, astrophysical observations, laboratory experiments, and state-of-the-art simulation studies.

Compact Stars in the QCD Phase Diagram

Authors: --- --- ---
ISBN: 9783039219582 9783039219599 Year: Pages: 273 DOI: 10.3390/books978-3-03921-959-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Mathematics
Added to DOAB on : 2020-01-30 16:39:46
License:

Loading...
Export citation

Choose an application

Abstract

The book edition of the Universe Special Issue “Compact Stars in the QCD Phase Diagram” is devoted to the overarching aspects shared between heavy-ion collisions and compact star astrophysics in investigating the hadron-to-quark matter phase transition in the equation of state of strongly interacting matter in different regions of the phase diagram of QCD. It comprises 22 review and research articles that, together, will serve as a useful guide in educating both young and senior scientists in this emerging field that represents an intersection of the communities of strongly interacting matter theory, heavy-ion collision physics and compact star astrophysics.

Keywords

heavy-ion collisions --- directed flow --- hydrodynamics --- deconfinement --- hybrid stars --- neutron stars --- equation of state --- ? meson condensation --- maximum mass --- ? resonances --- finite temperature --- finite density --- quark-gluon plasma --- finite size --- speed of sound --- neutron stars --- equation of state --- in-medium effects --- neutrino --- Quantum Chromodynamics --- dense matter --- vector interaction --- neutron stars --- equation of state --- QCD matter --- phase transition --- critical point --- modified excluded-volume mechanism --- dense matter --- equation of state --- stars: neutron --- pulsars: general, pulsars: PSR J0737 ? 3039A --- pulsars: PSR J1757 ? 1854 --- relativistic heavy-ion collisions --- monte carlo simulations --- transport theory --- strangeness --- neutron stars --- star oscillations --- hadron–quark continuity --- neutron stars --- QCD phase diagram --- neutron stars --- stellar magnetic field --- stellar structure --- stellar evolution --- neutron star --- equation of state --- phase transition --- quark matter --- pulsars --- quark stars --- general relativity --- Gravitational waves --- Gamma-ray bursts --- nuclear matter --- neutron stars --- quarks --- combustion --- neutron star --- QCD matter --- phase transition --- critical point --- neutron stars --- gravitational waves --- equation of state --- chiral symmetry --- axion QED --- quark-hole pairing --- cold-dense QCD --- magnetic DCDW --- quark matter --- hadronic matter --- quark deconfinement --- neutron star matter --- nuclear equation of state --- phase transition --- crystalline structure --- neutrino emissivities --- cluster virial expansion --- quark-hadron matter --- Mott dissociation --- Beth-Uhlenbeck equation of state --- heavy-ion collisions --- supernova explosions --- mass-twin stars --- nuclear symmetry energy --- heavy-ion collisions --- transport theory --- collective flow --- light cluster emission --- meson production --- quark-hadron phase transition --- pasta phases --- speed of sound --- hybrid compact stars --- mass-radius relation --- GW170817

Quantum Information and Foundations

Authors: ---
ISBN: 9783039283804 9783039283811 Year: Pages: 508 DOI: 10.3390/books978-3-03928-381-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Mathematics
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

Quantum information has dramatically changed information science and technology, looking at the quantum nature of the information carrier as a resource for building new information protocols, designing radically new communication and computation algorithms, and ultra-sensitive measurements in metrology, with a wealth of applications. From a fundamental perspective, this new discipline has led us to regard quantum theory itself as a special theory of information, and has opened routes for exploring solutions to the tension with general relativity, based, for example, on the holographic principle, on non-causal variations of the theory, or else on the powerful algorithm of the quantum cellular automaton, which has revealed new routes for exploring quantum fields theory, both as a new microscopic mechanism on the fundamental side, and as a tool for efficient physical quantum simulations for practical purposes. In this golden age of foundations, an astonishing number of new ideas, frameworks, and results, spawned by the quantum information theory experience, have revolutionized the way we think about the subject, with a new research community emerging worldwide, including scientists from computer science and mathematics.

Keywords

reconstruction of quantum theory --- entanglement --- monogamy --- quantum non-locality --- conserved informational charges --- limited information --- complementarity --- characterization of unitary group and state spaces --- algebraic quantum theory --- C*-algebra --- gelfand duality --- classical context --- bohrification --- process theory --- classical limit --- purity --- higher-order interference --- generalised probabilistic theories --- Euclidean Jordan algebras --- Pauli exclusion principle --- quantum foundations --- X-ray spectroscopy --- underground experiment --- silicon drift detector --- measurement uncertainty relations --- relative entropy --- position --- momentum --- quantum mechanics --- the measurement problem --- collapse models --- X-rays --- quantum gravity --- discrete spacetime --- causal sets --- path summation --- entropic gravity --- physical computing models --- complexity classes --- causality --- blind source separation (BSS) --- qubit pair --- exchange coupling --- entangled pure state --- unentanglement criterion --- probabilities in quantum measurements --- independence of random quantum sources --- iterant --- Clifford algebra --- matrix algebra --- braid group --- Fermion --- Dirac equation --- quantum information --- quantum computation --- semiclassical physics --- quantum control --- quantum genetic algorithm --- sampling-based learning control (SLC) --- quantum foundations --- relativity --- quantum gravity --- cluster states --- multipartite entanglement --- percolation --- Shannon information --- quantum information --- quantum measurements --- consistent histories --- incompatible frameworks --- single framework rule --- probability theory --- entropy --- quantum relative entropy --- quantum information --- quantum mechanics --- inference --- quantum measurement --- quantum estimation --- macroscopic quantum measurement --- quantum annealing --- adiabatic quantum computing --- hard problems --- Hadamard matrix --- binary optimization --- reconstruction of quantum mechanics --- conjugate systems --- Jordan algebras --- quantum correlations --- Gaussian states --- Gaussian unitary operations --- continuous-variable systems --- Wigner-friend experiment --- no-go theorem --- quantum foundations --- interpretations of quantum mechanics --- subsystem --- agent --- conservation of information --- purification --- group representations --- commuting subalgebras --- quantum walks --- Hubbard model --- Thirring model --- quantum information --- quantum foundations --- quantum theory and gravity

Listing 1 - 10 of 10
Sort by
Narrow your search