Search results: Found 8

Listing 1 - 8 of 8
Sort by
Centrales nucléaires et environnement - Prélèvements d'eau et rejets

Authors: ---
ISBN: 9782759809134 Year: Pages: 258 DOI: 10.26530/OAPEN_519657 Language: French
Publisher: EDP SCIENCES
Subject: Mathematics
Added to DOAB on : 2014-07-31 09:06:00
License:

Loading...
Export citation

Choose an application

Abstract

Environment, nuclear power Plant, pollution, rejection, water

Allorecognition by Leukocytes of the Adaptive Immune System

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889453863 Year: Pages: 107 DOI: 10.3389/978-2-88945-386-3 Language: English
Publisher: Frontiers Media SA
Subject: Medicine (General) --- Allergy and Immunology
Added to DOAB on : 2018-11-16 17:17:57
License:

Loading...
Export citation

Choose an application

Abstract

The term allorecognition refers to the series of mechanisms used by an individual’s immune system to distinguish its own cells and tissues from those of another individual belonging to the same species. During evolution, different cells and molecules of both innate and adaptive immune systems have been selected to recognize and respond to antigens expressed by allogeneic cells, but not autologous cells (alloantigens). This research topic focuses on allorecognition by lymphocytes of the adaptive immune system and its involvement in rejection or tolerance of allogeneic transplants. T and B cells recognizing alloantigens via specific receptors become activated and undergo proliferation and differentiation into different types of effector and memory cells. Allorecognition by lymphocytes occurs regularly during pregnancy upon trafficking of both maternal and fetal cells. In this setting, allorecognition triggers an alloresponse that is protective towards the fetus thus preventing abortion. Protective alloimmunity is mediated through cooperation between different lymphocytes and antigen presenting cells (APCs), as well as regulatory mediators and receptors. Likewise, certain transplants placed in organs and tissues called immune-privileged sites such as the eye, the central nervous system and the testis elicit protective rather than destructive adaptive immune responses. Therefore, under certain circumstances, allorecognition by regulatory lymphocytes (Tregs and Bregs) can lead to tolerance of alloantigens. In contrast, allorecognition by T cells in non-immune privileged sites and under inflammatory conditions leads to a destructive immune response. Indeed, after transplantation of most allogeneic organs and tissues, activation of pro-inflammatory T cells (TH1 and TH17), which recognize donor MHC proteins (direct pathway) or peptides derived from donor MHC and minor antigens (indirect pathway), leads to graft rejection. This inflammatory response leads to the differentiation of allospecific cytotoxic T cells as well as production of donor specific antibodies by B cells, both of which contribute to the destruction of the transplant. In this Research Topic, we describe the different pathways of allorecognition by T cells involved in allograft rejection, as well as the role of different antigen presenting cells and graft-derived microvesicles (exosomes) involved in this process. Another aspect of this Research Topic addresses the essential role of alloreactive memory T cells in allograft rejection and resistance to transplant tolerance induction in laboratory rodents, as well as non-human primates and patients. Indeed, it has become evident that laboratory mice display very few memory alloreactive T cells pre-transplantation, essentially due to the fact that they are raised in pathogen-free facilities. In contrast, primates display high frequencies of alloreactive memory T cells, either generated through prior exposure to allogeneic MHC molecules or via cross-reactivity with microbial antigens. We and others have provided ample evidence showing that this feature accounts for differences in terms of tolerance susceptibility between laboratory rodents and patients. This implies that further investigation of tolerance protocols in laboratory mice should be performed using “dirty mice” i.e., mice raised in non-sterile conditions. In summary, this Research Topic addresses key aspects of allorecognition by lymphocytes and alloantigen presentation by dendritic cells, and specifically how these processes shape our immune system and govern the rejection or tolerance of allogeneic tissues and organs.

Transplant Rejection and Tolerance: Advancing the Field through Integration of Computational and Experimental Investigations

Authors: --- --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889452927 Year: Pages: 130 DOI: 10.3389/978-2-88945-292-7 Language: English
Publisher: Frontiers Media SA
Subject: Medicine (General) --- Allergy and Immunology
Added to DOAB on : 2018-02-27 16:16:44
License:

Loading...
Export citation

Choose an application

Abstract

Organ transplantation is a life-saving surgical procedure through which the functionality of a failing organ system can be restored. However, without the life-long administration of immunosuppressive drugs, the recipient’s immune system will launch a massive immune attack that will ultimately destroy the graft. Although successful at protecting the graft from an immune attack, long-term use of immunosuppressive drugs leads to serious complications (e.g., increased risk of infection, diabetes, hypertension, cardiovascular disease, and cancer). Moreover, recipients suffer from limited long-term graft survival rates due to the inability of current treatments to establish tolerance to the transplanted tissues. Thus, there is a great medical need to understand the complex network of immune system interactions that lead to transplant rejection so that new strategies of intervention can be determined that will redirect the system toward transplant acceptance while preserving immune competence against offending agents. In the past 20 years, the discovery and growing understanding of the positive and negative regulators of the activation of the immune system have fostered new interventional procedures targeting one or the other. While pre-clinical results proved the validity of these strategies, their clinical implementation has been troublesome. These results underscore the need for additional methods to determine the most effective interventions to prevent long-term transplant rejection. New tools of genomics, proteomics and metabolomics are being implemented in powerful analyses that promise the development of better, safer personalized treatments. In parallel, theoretical modeling has emerged as a tool that transcends investigations of individual mechanistic processes and instead unravels the relevant mechanisms of complex systems such as the immune response triggered by a transplant. In this way, theoretical models can be used to identify important behavior that arises from complex systems and thereby delineate emergent properties of biological systems that could not be identified studying single components. Employing this approach, interdisciplinary collaborations among immunologists, mathematicians, and system biologists will yield novel perspectives in the development of more effective strategies of intervention. The aim of this Research Topic is to demonstrate how new insight and methods from theoretical and experimental studies of the immune response can aid in identifying new research directions in transplant immunology. First, techniques from various theoretical and experimental studies with applications to the immune response will be reviewed to determine how they can be adapted to explore the complexity of transplant rejection. Second, recent advances in the acquisition and mining of large data sets related to transplant genomics, proteomics, and metabolomics will be discussed in the context of their predictive power and potential for optimizing and personalizing patient treatment. Last, new perspectives will be offered on the integration of computational immune modeling with transplant and omics data to establish more effective strategies of intervention that promote transplant tolerance.

Antibody Repertoire and Graft Outcome Following Solid Organ Transplantation

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889452415 Year: Pages: 176 DOI: 10.3389/978-2-88945-241-5 Language: English
Publisher: Frontiers Media SA
Subject: Allergy and Immunology --- Medicine (General)
Added to DOAB on : 2017-10-13 14:57:01
License:

Loading...
Export citation

Choose an application

Abstract

The first real major breakthrough that laid the basis of HLA antibody detection in the field of solid organ transplantation, came with the introduction of the complement dependent cytotoxicity (CDC) test in 1964 by Terasaki and McClelland. Since then, methods for antibody detection have evolved remarkably from conventional cell-based assays to the current advanced solid phase systems on the Luminex platform, with increasing degree of sensitivity and specificity. The latter have been indispensable for more accurate identification of donor specific HLA antibodies in broadly reactive allo antisera, and to guide donor selection and kidney paired exchange programs through virtual crossmatching, in addition to serving as excellent tools for initiating pre-transplant desensitization and post- transplant antibody monitoring. Consensus is evolving on the optimal routine employment of these methods in donor selection strategies along with an understanding of the clinical relevance of antibodies detected by each of them. The immunoassays based on the Luminex platform and flow cytometric beads are however unable to discriminate complement fixing from non-complement fixing HLA antibodies. This is important because the former are considered clinically more pertinent in the peri-transplant period. The C1q assay which is a modification of the solid phase assay based on Luminex single antigen beads, which can be used effectively to monitor high dose IVIG desensitization is essentially a surrogate complement fixing assay, retaining the exquisite sensitivity and specificity of the Luminex platform. Currently, information obtained from these assays is preliminary and much needs to be done to standardize technologies and set a consensus ‘MFI cut off’ for antibody positivity. Besides the overriding influence of anti-HLA antibodies on overall solid organ graft survival, immune response to non-HLA antigens has become a topic of substantial interest in recent years. An ever expanding list of non-HLA antigens has been implicated in graft rejection for various organs, of which the most noted are the Major Histocompatibility Complex class I chain-related molecule A (MICA), Vimentin, Myosin, Angiotensin II type 1 receptor (AT1R), Tubulin and Collagen. MICA is one of the most polymorphic and extensively studied non-HLA antigenic targets especially in renal transplantation. Although there are clear indications of MICA antibodies being associated with adverse graft outcome, to date a definitive consensus on this relationship has not been agreed. Because MICA molecules are not expressed constitutively on immunocompetent cells such as T and B lymphocytes, it is of utmost importance to address the impact of MICA donor specific antibodies (DSA) as compared to those that are non- donor specific (NDSA) on graft outcome. The soluble isoform of MICA molecule (sMICA) that is derived from the proteolytic shedding of membrane bound molecules has the potential to engage the NK-cell activating receptor NKG2D and down-regulate its expression. Consequent to the interaction of NKG2D by sMICA, the receptor ligand complex is endocytosed and degraded and thus suppresses NKG2D mediated lysis of the target by NK cells. Thus interaction between NKG2D and sMICA leads to expansion of immunosuppressive/anergic T cells thereby resulting in suppression of NKG2D mediated host innate immunity. These concept support the possible involvement of an immunosuppressive role for sMICA during allotransplantation as shown recently for heart transplantation. This research topic focuses on the clinical utility of investigating the complete antibody repertoire in solid organ transplantation.

Sustainable Energy Systems: From Primary to End-Use

Authors: --- ---
ISBN: 9783039210961 / 9783039210978 Year: Pages: 314 DOI: 10.3390/books978-3-03921-097-8 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Physics (General)
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

This book focuses on sustainable energy systems. While several innovative and alternative concepts are presented, the topics of energy policy, life cycle assessment, thermal energy, and renewable energy also play a major role. Models on various temporal and geographical scales are developed to understand the conditions of technical as well as organizational change. New methods of modeling, which can fulfil technical and physical boundary conditions and nevertheless consider economic environmental and social aspects, are also developed.

Keywords

Active Disturbance Rejection Control --- Probabilistic Robustness --- Monte Carlo --- secondary air regulation --- areal grey relational analysis --- fuzzy rough set --- game theory --- AHP --- uncertainty analysis --- coal-fired power unit --- renewable energy --- biomass --- torrefaction --- grindability --- rotary reactor --- generation system scheduling --- integrated model --- basic plan for long-term electricity supply and demand --- forecasting model for electricity demand --- biomass --- Pinus pinaster --- fuel --- heating value --- fuelwood value index --- energy density --- ash recovery --- peach --- Energy Life-Cycle Assessment --- post-harvest --- fuzzy logic control --- artificial neural networks control --- tidal stream generator --- swell effect disturbance --- doubly fed induction generator --- maximum power point tracking --- capacity investment --- market power --- wind resources --- dynamic planning --- stochastic approach --- levelized cost of energy --- photovoltaic with energy storage system --- HOMER simulation --- LCOE comparison --- sensitivity analysis --- transient impact --- renewable energy source penetration --- power system stability --- robust optimization --- renewable energy --- flexibility --- deficit --- uncertainty --- flexible resource --- energy storage systems --- active power harmonics filter --- electrostatic devices --- hysteresis switching --- op-amp --- power electronics --- power supply reliability --- electricity --- manufacturing industry --- choice experiment --- willingness to pay --- nexus concept --- energy modelling --- resource efficiency --- renewable energy --- low-carbon economy --- forecasting --- multilayer perception --- photovoltaic --- sustainable energy --- pseudo-Huber loss --- energy from biomass --- textile industrial sector --- alternative energy --- SWOT analysis --- energy costs --- Internet of Things --- thermodynamic cycle concepts --- sustainability --- modified cycle concepts --- efficiency --- energy systems --- renewable energies --- wind power plants --- hollow rollers --- large bearings

Advanced Mobile Robotics: Volume 1

Author:
ISBN: 9783039219162 / 9783039219179 Year: Pages: 468 DOI: 10.3390/books978-3-03921-917-9 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

Mobile robotics is a challenging field with great potential. It covers disciplines including electrical engineering, mechanical engineering, computer science, cognitive science, and social science. It is essential to the design of automated robots, in combination with artificial intelligence, vision, and sensor technologies. Mobile robots are widely used for surveillance, guidance, transportation and entertainment tasks, as well as medical applications. This Special Issue intends to concentrate on recent developments concerning mobile robots and the research surrounding them to enhance studies on the fundamental problems observed in the robots. Various multidisciplinary approaches and integrative contributions including navigation, learning and adaptation, networked system, biologically inspired robots and cognitive methods are welcome contributions to this Special Issue, both from a research and an application perspective.

Keywords

path planning --- lane change --- excellent driver model --- neural networks --- autonomous vehicle --- remotely operated vehicle --- ocean current --- cable disturbance modeling --- lumped parameter method --- sliding mode observer --- 4WS4WD vehicle --- force control --- MPC --- PSO --- path tracking --- negative-buoyancy --- tri-tilt-rotor --- autonomous underwater vehicle (AUV) --- immersion and invariance --- object mapping --- Geometric Algebra --- Differential Evolution --- non-inertial reference frame --- centrifugal force --- turning model LIP --- trajectory planning --- space robot --- hybrid bionic robot --- chameleon --- end effector --- hybrid robot --- curve fitting --- fair optimisation --- trajectory interpolation --- piezoelectric actuator --- high step-up ratio --- high efficiency --- small size --- micro mobile robot --- biomimetic robot --- micro air vehicle --- flapping --- drag-based system --- dragonfly --- snake-like robot --- singularity analysis --- system design --- dynamical model --- nonlinear differentiator --- robotic drilling --- sliding mode control --- drilling end-effector --- fault diagnosis --- quadcopter UAV --- fault-tolerant control --- sliding mode observer --- Thau observer --- smart materials --- actuators --- robots --- electro-rheological fluids --- magneto-rheological fluids --- shape memory alloys --- medical devices --- rehabilitation system --- LOS --- motion camouflage control --- parallel navigation --- missile control system --- target tracking --- variable speed --- high-speed target --- snake robots --- head-raising --- shape-fitting --- phase-shifting --- spiral curve --- servo valve --- pneumatics --- position control --- cart --- robot --- step climbing --- transportation --- stopper --- climbing robot --- safety recovery mechanism --- cable detection --- dynamic coupling analysis --- path planning --- mobile robots --- curvature constraints --- state constraints --- extend procedure --- G3-continuity --- car-like kinematics --- obstacle avoidance system --- harmonic potential field --- curvature constraint --- non-holonomic mobile robot --- computing time --- inverse kinematics --- joint limit avoidance --- kinematic singularity --- manipulator --- obstacle avoidance --- potential field --- service robot --- graph representation --- similarity measure --- mobile robot --- static environments --- path planning --- multi-objective optimization --- NSGA-II --- evolutionary operators --- mobile robot --- coalmine --- exploration --- robotics --- ATEX --- safety --- methane --- quadruped robot --- stability criterion --- dynamic gait --- glass façade cleaning robot --- wall climbing robot --- biped mechanism --- data association --- 3D-SLAM --- localization --- mapping --- disturbance-rejection control --- extended state observer (ESO) --- hover mode --- transition mode --- negative buoyancy --- quad-tilt rotor --- autonomous underwater vehicle (AUV) --- Rodrigues parameters --- UAV --- variable spray --- prescription map translation --- PID algorithm --- grip planning --- biped climbing robots --- collision avoidance --- grip optimization --- dynamic environment --- closed-loop detection --- sparse pose adjustment (SPA) --- inertial measurement unit (IMU) --- simultaneous localization and mapping (SLAM) --- non-singular fast-terminal sliding-mode control --- industrial robotic manipulator --- external disturbance --- dynamic uncertainty --- adaptive control law --- exoskeleton --- load carriage --- muscle activities --- human–robot interaction --- discomfort --- actuatorless --- alpine ski --- human–robot interaction --- mechanism --- passive skiing turn --- skiing robot --- predictable trajectory planning --- geodesic --- constrained motion --- mobile robot --- jumping robot --- hopping robot --- continuous hopping --- single actuator --- self-reconfigurable robot --- cleaning robot --- Tetris-inspired --- polyomino tiling theory --- coverage path planning --- area decomposition --- multi-criteria decision making --- design and modeling --- kinematics --- kinematic identification --- monocular vision --- action generation --- robot motion --- undiscovered sensor values --- differential wheeled robot --- powered exoskeleton --- motion sensor --- machine learning --- unmanned aerial vehicle --- pesticide application --- deposition uniformity --- droplets penetrability --- control efficacy --- working efficiency --- subgoal graphs --- reinforcement learning --- hierarchical path planning --- uncertain environments --- mobile robots --- deep reinforcement learning --- mobile manipulation --- robot learning --- intelligent mobile robot --- pallet transportation --- master-slave --- compact driving unit --- high-gain observer --- snake robot --- series elastic actuator --- SEA --- Robot Operating System --- ROS --- non-prehensile manipulation --- manipulation planning --- contact planning --- manipulation action sequences --- robot --- obstacle avoidance --- facial and gender recognition --- q-learning --- Q-networks --- reinforcement learning --- gait cycle --- biped robots --- minimally invasive surgery robot --- inverse kinematics --- dialytic elimination --- Newton iteration --- curvilinear obstacle --- douglas–peuker polygonal approximation --- opposite angle-based exact cell decomposition --- path planning --- mobile robot --- UAV --- auto-tuning --- machine learning --- iterative learning --- extremum-seeking --- altitude controller --- enemy avoidance --- reinforcement learning --- decision making --- hardware-in-the-loop simulation --- unmanned aerial vehicles --- path planning --- multiple mobile robots --- artificial fish swarm algorithm --- expansion logic strategy --- sample gathering problem --- mobile robots --- mathematical modeling --- numerical evaluation --- centralized architecture --- optimization --- fault recovery --- reinforcement learning --- gait adaptation --- legged robot --- bio-inspired robot --- human–machine interactive navigation --- mobile robot --- topological map --- regional growth --- trajectory planning --- position/force cooperative control --- hierarchical planning --- object-oriented --- symmetrical adaptive variable impedance --- biologically-inspired --- self-learning --- formation control --- mobile robots --- loop closure detection --- convolutional neural network --- spatial pyramid pooling --- dynamic neural networks --- mobile robot navigation --- gesture recognition --- behaviour dynamics --- real-time action recognition --- formation of robots --- non-holonomic robot --- stability analysis --- Lyapunov-like function --- target assignment --- goal exchange --- path following --- switching control --- swarm-robotics --- rendezvous consensus --- robot navigation --- victim-detection --- unmanned surface vessel --- path following --- integral line-of-sight --- finite-time currents observer --- radial basis function neural networks --- input saturation --- n/a

Advanced Mobile Robotics: Volume 2

Author:
ISBN: 9783039219445 / 9783039219452 Year: Pages: 498 DOI: 10.3390/books978-3-03921-945-2 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

Mobile robotics is a challenging field with great potential. It covers disciplines including electrical engineering, mechanical engineering, computer science, cognitive science, and social science. It is essential to the design of automated robots, in combination with artificial intelligence, vision, and sensor technologies. Mobile robots are widely used for surveillance, guidance, transportation and entertainment tasks, as well as medical applications. This Special Issue intends to concentrate on recent developments concerning mobile robots and the research surrounding them to enhance studies on the fundamental problems observed in the robots. Various multidisciplinary approaches and integrative contributions including navigation, learning and adaptation, networked system, biologically inspired robots and cognitive methods are welcome contributions to this Special Issue, both from a research and an application perspective.

Keywords

path planning --- lane change --- excellent driver model --- neural networks --- autonomous vehicle --- remotely operated vehicle --- ocean current --- cable disturbance modeling --- lumped parameter method --- sliding mode observer --- 4WS4WD vehicle --- force control --- MPC --- PSO --- path tracking --- negative-buoyancy --- tri-tilt-rotor --- autonomous underwater vehicle (AUV) --- immersion and invariance --- object mapping --- Geometric Algebra --- Differential Evolution --- non-inertial reference frame --- centrifugal force --- turning model LIP --- trajectory planning --- space robot --- hybrid bionic robot --- chameleon --- end effector --- hybrid robot --- curve fitting --- fair optimisation --- trajectory interpolation --- piezoelectric actuator --- high step-up ratio --- high efficiency --- small size --- micro mobile robot --- biomimetic robot --- micro air vehicle --- flapping --- drag-based system --- dragonfly --- snake-like robot --- singularity analysis --- system design --- dynamical model --- nonlinear differentiator --- robotic drilling --- sliding mode control --- drilling end-effector --- fault diagnosis --- quadcopter UAV --- fault-tolerant control --- sliding mode observer --- Thau observer --- smart materials --- actuators --- robots --- electro-rheological fluids --- magneto-rheological fluids --- shape memory alloys --- medical devices --- rehabilitation system --- LOS --- motion camouflage control --- parallel navigation --- missile control system --- target tracking --- variable speed --- high-speed target --- snake robots --- head-raising --- shape-fitting --- phase-shifting --- spiral curve --- servo valve --- pneumatics --- position control --- cart --- robot --- step climbing --- transportation --- stopper --- climbing robot --- safety recovery mechanism --- cable detection --- dynamic coupling analysis --- path planning --- mobile robots --- curvature constraints --- state constraints --- extend procedure --- G3-continuity --- car-like kinematics --- obstacle avoidance system --- harmonic potential field --- curvature constraint --- non-holonomic mobile robot --- computing time --- inverse kinematics --- joint limit avoidance --- kinematic singularity --- manipulator --- obstacle avoidance --- potential field --- service robot --- graph representation --- similarity measure --- mobile robot --- static environments --- path planning --- multi-objective optimization --- NSGA-II --- evolutionary operators --- mobile robot --- coalmine --- exploration --- robotics --- ATEX --- safety --- methane --- quadruped robot --- stability criterion --- dynamic gait --- glass façade cleaning robot --- wall climbing robot --- biped mechanism --- data association --- 3D-SLAM --- localization --- mapping --- disturbance-rejection control --- extended state observer (ESO) --- hover mode --- transition mode --- negative buoyancy --- quad-tilt rotor --- autonomous underwater vehicle (AUV) --- Rodrigues parameters --- UAV --- variable spray --- prescription map translation --- PID algorithm --- grip planning --- biped climbing robots --- collision avoidance --- grip optimization --- dynamic environment --- closed-loop detection --- sparse pose adjustment (SPA) --- inertial measurement unit (IMU) --- simultaneous localization and mapping (SLAM) --- non-singular fast-terminal sliding-mode control --- industrial robotic manipulator --- external disturbance --- dynamic uncertainty --- adaptive control law --- exoskeleton --- load carriage --- muscle activities --- human–robot interaction --- discomfort --- actuatorless --- alpine ski --- human–robot interaction --- mechanism --- passive skiing turn --- skiing robot --- predictable trajectory planning --- geodesic --- constrained motion --- mobile robot --- jumping robot --- hopping robot --- continuous hopping --- single actuator --- self-reconfigurable robot --- cleaning robot --- Tetris-inspired --- polyomino tiling theory --- coverage path planning --- area decomposition --- multi-criteria decision making --- design and modeling --- kinematics --- kinematic identification --- monocular vision --- action generation --- robot motion --- undiscovered sensor values --- differential wheeled robot --- powered exoskeleton --- motion sensor --- machine learning --- unmanned aerial vehicle --- pesticide application --- deposition uniformity --- droplets penetrability --- control efficacy --- working efficiency --- subgoal graphs --- reinforcement learning --- hierarchical path planning --- uncertain environments --- mobile robots --- deep reinforcement learning --- mobile manipulation --- robot learning --- intelligent mobile robot --- pallet transportation --- master-slave --- compact driving unit --- high-gain observer --- snake robot --- series elastic actuator --- SEA --- Robot Operating System --- ROS --- non-prehensile manipulation --- manipulation planning --- contact planning --- manipulation action sequences --- robot --- obstacle avoidance --- facial and gender recognition --- q-learning --- Q-networks --- reinforcement learning --- gait cycle --- biped robots --- minimally invasive surgery robot --- inverse kinematics --- dialytic elimination --- Newton iteration --- curvilinear obstacle --- douglas–peuker polygonal approximation --- opposite angle-based exact cell decomposition --- path planning --- mobile robot --- UAV --- auto-tuning --- machine learning --- iterative learning --- extremum-seeking --- altitude controller --- enemy avoidance --- reinforcement learning --- decision making --- hardware-in-the-loop simulation --- unmanned aerial vehicles --- path planning --- multiple mobile robots --- artificial fish swarm algorithm --- expansion logic strategy --- sample gathering problem --- mobile robots --- mathematical modeling --- numerical evaluation --- centralized architecture --- optimization --- fault recovery --- reinforcement learning --- gait adaptation --- legged robot --- bio-inspired robot --- human–machine interactive navigation --- mobile robot --- topological map --- regional growth --- trajectory planning --- position/force cooperative control --- hierarchical planning --- object-oriented --- symmetrical adaptive variable impedance --- biologically-inspired --- self-learning --- formation control --- mobile robots --- loop closure detection --- convolutional neural network --- spatial pyramid pooling --- dynamic neural networks --- mobile robot navigation --- gesture recognition --- behaviour dynamics --- real-time action recognition --- formation of robots --- non-holonomic robot --- stability analysis --- Lyapunov-like function --- target assignment --- goal exchange --- path following --- switching control --- swarm-robotics --- rendezvous consensus --- robot navigation --- victim-detection --- unmanned surface vessel --- path following --- integral line-of-sight --- finite-time currents observer --- radial basis function neural networks --- input saturation --- n/a

Advanced Mobile Robotics: Volume 3

Author:
ISBN: 9783039219469 / 9783039219476 Year: Pages: 270 DOI: 10.3390/books978-3-03921-947-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

Mobile robotics is a challenging field with great potential. It covers disciplines including electrical engineering, mechanical engineering, computer science, cognitive science, and social science. It is essential to the design of automated robots, in combination with artificial intelligence, vision, and sensor technologies. Mobile robots are widely used for surveillance, guidance, transportation and entertainment tasks, as well as medical applications. This Special Issue intends to concentrate on recent developments concerning mobile robots and the research surrounding them to enhance studies on the fundamental problems observed in the robots. Various multidisciplinary approaches and integrative contributions including navigation, learning and adaptation, networked system, biologically inspired robots and cognitive methods are welcome contributions to this Special Issue, both from a research and an application perspective.

Keywords

path planning --- lane change --- excellent driver model --- neural networks --- autonomous vehicle --- remotely operated vehicle --- ocean current --- cable disturbance modeling --- lumped parameter method --- sliding mode observer --- 4WS4WD vehicle --- force control --- MPC --- PSO --- path tracking --- negative-buoyancy --- tri-tilt-rotor --- autonomous underwater vehicle (AUV) --- immersion and invariance --- object mapping --- Geometric Algebra --- Differential Evolution --- non-inertial reference frame --- centrifugal force --- turning model LIP --- trajectory planning --- space robot --- hybrid bionic robot --- chameleon --- end effector --- hybrid robot --- curve fitting --- fair optimisation --- trajectory interpolation --- piezoelectric actuator --- high step-up ratio --- high efficiency --- small size --- micro mobile robot --- biomimetic robot --- micro air vehicle --- flapping --- drag-based system --- dragonfly --- snake-like robot --- singularity analysis --- system design --- dynamical model --- nonlinear differentiator --- robotic drilling --- sliding mode control --- drilling end-effector --- fault diagnosis --- quadcopter UAV --- fault-tolerant control --- sliding mode observer --- Thau observer --- smart materials --- actuators --- robots --- electro-rheological fluids --- magneto-rheological fluids --- shape memory alloys --- medical devices --- rehabilitation system --- LOS --- motion camouflage control --- parallel navigation --- missile control system --- target tracking --- variable speed --- high-speed target --- snake robots --- head-raising --- shape-fitting --- phase-shifting --- spiral curve --- servo valve --- pneumatics --- position control --- cart --- robot --- step climbing --- transportation --- stopper --- climbing robot --- safety recovery mechanism --- cable detection --- dynamic coupling analysis --- path planning --- mobile robots --- curvature constraints --- state constraints --- extend procedure --- G3-continuity --- car-like kinematics --- obstacle avoidance system --- harmonic potential field --- curvature constraint --- non-holonomic mobile robot --- computing time --- inverse kinematics --- joint limit avoidance --- kinematic singularity --- manipulator --- obstacle avoidance --- potential field --- service robot --- graph representation --- similarity measure --- mobile robot --- static environments --- path planning --- multi-objective optimization --- NSGA-II --- evolutionary operators --- mobile robot --- coalmine --- exploration --- robotics --- ATEX --- safety --- methane --- quadruped robot --- stability criterion --- dynamic gait --- glass façade cleaning robot --- wall climbing robot --- biped mechanism --- data association --- 3D-SLAM --- localization --- mapping --- disturbance-rejection control --- extended state observer (ESO) --- hover mode --- transition mode --- negative buoyancy --- quad-tilt rotor --- autonomous underwater vehicle (AUV) --- Rodrigues parameters --- UAV --- variable spray --- prescription map translation --- PID algorithm --- grip planning --- biped climbing robots --- collision avoidance --- grip optimization --- dynamic environment --- closed-loop detection --- sparse pose adjustment (SPA) --- inertial measurement unit (IMU) --- simultaneous localization and mapping (SLAM) --- non-singular fast-terminal sliding-mode control --- industrial robotic manipulator --- external disturbance --- dynamic uncertainty --- adaptive control law --- exoskeleton --- load carriage --- muscle activities --- human–robot interaction --- discomfort --- actuatorless --- alpine ski --- human–robot interaction --- mechanism --- passive skiing turn --- skiing robot --- predictable trajectory planning --- geodesic --- constrained motion --- mobile robot --- jumping robot --- hopping robot --- continuous hopping --- single actuator --- self-reconfigurable robot --- cleaning robot --- Tetris-inspired --- polyomino tiling theory --- coverage path planning --- area decomposition --- multi-criteria decision making --- design and modeling --- kinematics --- kinematic identification --- monocular vision --- action generation --- robot motion --- undiscovered sensor values --- differential wheeled robot --- powered exoskeleton --- motion sensor --- machine learning --- unmanned aerial vehicle --- pesticide application --- deposition uniformity --- droplets penetrability --- control efficacy --- working efficiency --- subgoal graphs --- reinforcement learning --- hierarchical path planning --- uncertain environments --- mobile robots --- deep reinforcement learning --- mobile manipulation --- robot learning --- intelligent mobile robot --- pallet transportation --- master-slave --- compact driving unit --- high-gain observer --- snake robot --- series elastic actuator --- SEA --- Robot Operating System --- ROS --- non-prehensile manipulation --- manipulation planning --- contact planning --- manipulation action sequences --- robot --- obstacle avoidance --- facial and gender recognition --- q-learning --- Q-networks --- reinforcement learning --- gait cycle --- biped robots --- minimally invasive surgery robot --- inverse kinematics --- dialytic elimination --- Newton iteration --- curvilinear obstacle --- douglas–peuker polygonal approximation --- opposite angle-based exact cell decomposition --- path planning --- mobile robot --- UAV --- auto-tuning --- machine learning --- iterative learning --- extremum-seeking --- altitude controller --- enemy avoidance --- reinforcement learning --- decision making --- hardware-in-the-loop simulation --- unmanned aerial vehicles --- path planning --- multiple mobile robots --- artificial fish swarm algorithm --- expansion logic strategy --- sample gathering problem --- mobile robots --- mathematical modeling --- numerical evaluation --- centralized architecture --- optimization --- fault recovery --- reinforcement learning --- gait adaptation --- legged robot --- bio-inspired robot --- human–machine interactive navigation --- mobile robot --- topological map --- regional growth --- trajectory planning --- position/force cooperative control --- hierarchical planning --- object-oriented --- symmetrical adaptive variable impedance --- biologically-inspired --- self-learning --- formation control --- mobile robots --- loop closure detection --- convolutional neural network --- spatial pyramid pooling --- dynamic neural networks --- mobile robot navigation --- gesture recognition --- behaviour dynamics --- real-time action recognition --- formation of robots --- non-holonomic robot --- stability analysis --- Lyapunov-like function --- target assignment --- goal exchange --- path following --- switching control --- swarm-robotics --- rendezvous consensus --- robot navigation --- victim-detection --- unmanned surface vessel --- path following --- integral line-of-sight --- finite-time currents observer --- radial basis function neural networks --- input saturation --- n/a

Listing 1 - 8 of 8
Sort by
Narrow your search
-->