Search results: Found 7

Listing 1 - 7 of 7
Sort by
Bioactive Components in Fermented Foods and Food By-Products

Authors: --- ---
ISBN: 9783039288519 / 9783039288526 Year: Pages: 140 DOI: 10.3390/books978-3-03928-852-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Microbiology
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Food fermentation is one of the most ancient processes of food production that has historically been used to extend food shelf life and to enhance its organoleptic properties. However, several studies have demonstrated that fermentation is also able to increase the nutritional value and/or digestibility of food. Firstly, microorganisms are able to produce huge amounts of secondary metabolites with excellent health benefits and preservative properties (i.e., antimicrobial activity). Secondarily, fermented foods contain living organisms that contribute to the modulation of the host physiological balance, which constitutes an opportunity to enrich the diet with new bioactive molecules. Indeed, some microorganisms can increase the levels of numerous bioactive compounds (e.g., vitamins, antioxidant compounds, peptides, etc.). Moreover, recent advances in fermentation have focused on food by-products; in fact, they are a source of potentially bioactive compounds that, after fermentation, could be used as ingredients for nutraceuticals and functional food formulations. Because of that, understanding the benefits of food fermentation is a growing field of research in nutrition and food science. This book aims to present the current knowledge and research trends concerning the use of fermentation technologies as sustainable and GRAS processes for food and nutraceutical production.

Advances in Hydrometallurgy

Author:
ISBN: 9783039289394 / 9783039289400 Year: Pages: 188 DOI: 10.3390/books978-3-03928-940-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

The development of new technologies and the increasing demand for mineral resources from emerging countries are responsible for significant tensions in the pricing of non-ferrous metals. Some metals have become strategic and critical because they are used in many technological applications such as flat panel TVs (indium), solar panel cells (indium), lithium-ion batteries for electric vehicles (lithium, cobalt), magnets (rare earth elements, such as neodymium and dysprosium), scintillators (rare earths), and aviation and medical applications (titanium); their availabilities remain limited. The secured supply of these metals is crucial to continue producing and exporting these technologies, and because the specific properties of these metals make them essential and difficult to substitute for a given industrial application. Hydrometallurgy have the advantages of being able to process low-grade ores, to allow better control of co-products, and have a lower environmental impact providing that the hydrometallurgical route is optimized and cheap. The need to develop sustainable, efficient, and cheap processes to extract metals from complex and poor polymetallic matrices is real. The aim of this book was to highlight recent advances related to hydrometallurgy to face new challenges in metal production.

Manufacturing and Application of Stainless Steels

Author:
ISBN: 9783039286508 / 9783039286515 Year: Pages: 260 DOI: 10.3390/books978-3-03928-651-5 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Mining and Metallurgy
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Stainless steels represent a quite interesting material family, both from a scientific and commercial point of view, following to their excellent combination in terms of strength and ductility together with corrosion resistance. Thanks to such properties, stainless steels have been indispensable for the technological progress during the last century and their annual consumption increased faster than other materials. They find application in all these fields requiring good corrosion resistance together with ability to be worked into complex geometries. Despite to their diffusion as a consolidated materials, many research fields are active regarding the possibility to increase stainless steels mechanical properties and corrosion resistance by grain refinement or by alloying by interstitial elements. At the same time innovations are coming from the manufacturing process of such a family of materials, also including the possibility to manufacture them starting from metals powder for 3D printing. The Special Issue scope embraces interdisciplinary work covering physical metallurgy and processes, reporting about experimental and theoretical progress concerning microstructural evolution during processing, microstructure-properties relations, applications including automotive, energy and structural.

Ironmaking and Steelmaking

Authors: ---
ISBN: 9783039213290 9783039213306 Year: Pages: 464 DOI: 10.3390/books978-3-03921-330-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Physics (General)
Added to DOAB on : 2019-12-09 16:10:12
License:

Loading...
Export citation

Choose an application

Abstract

Steel is a critical material in our societies and will remain an important one for a long time into the future. In the last two decades, the world steel industry has gone through drastic changes and this is predicted to continue in the future. The Asian countries (e.g. China, India) have been dominant in the production of steel creating global over-capacity, while the steel industry in the developed countries have made tremendous efforts to reinforce its global leadership in process technology and product development, and remain sustainable and competitive. The global steel industry is also facing various grand challenges in strict environmental regulation, new energy and materials sources, and ever-increasing customer requirements for high quality steel products, which has been addressed accordingly by the global iron and steel community. This Special Issue, “Ironmaking and Steelmaking”, released by the journal Metals, published 33 high quality articles from the international iron and steel community, covering the state-of-the-art of the ironmaking and steelmaking processes. This includes fundamental understanding, experimental investigation, pilot plant trials, industrial applications and big data utilization in the improvement and optimization of existing processes, and research and development in transformative technologies. It is hoped that the creation of this special issue as a scientific platform will help drive the iron and steel community to build a sustainable steel industry.

Keywords

ironmaking --- microwaves --- carbothermal reduction --- iron oxides --- emission spectrum --- ore-carbon briquette --- CO–CO2 atmosphere --- simulation --- re-oxidation --- reduction --- electroslag cladding --- high speed steel --- ductile cast iron --- composite roll --- bonding interface --- high-phosphorus iron ore --- fluorapatite --- carbothermal reduction --- vaporization dephosphorization --- iron ore pellets --- compressive strength (CS) --- prediction model --- artificial neural network --- principal component analysis --- crystallization behaviors --- crystallization rate --- anosovite crystals --- silicate crystals --- titanium slag --- blast furnace --- copper stave --- hydrogen attack --- slag crust --- heat-affected zone --- high heat input welding --- Ca deoxidation --- inclusion control --- intragranular acicular ferrite --- concentrate --- iron ore --- agglomerate --- structure --- phase analysis --- Mg deoxidation --- inclusions --- Al addition --- high-heat-input welding --- heat-affected zone --- toughness --- shot peening --- Barkhausen noise --- crystallite size --- carbon composite pellet --- direct reduction --- shrinkage --- kinetics --- rotary hearth furnace --- hydrogen plasma --- smelting reduction --- HPSR --- iron oxide --- plasma arc --- ionization degree --- sulfur distribution ratio --- liquid area --- carbon-saturated iron --- phosphate capacity --- sulfide capacity --- phosphorus distribution ratio --- sulfur distribution ratio --- evaluation of coupling relationship --- secondary refining process, CaO–based slags --- iron sulfate --- TG analysis --- thermal treatment --- iron oxide --- kinetics --- activation energy --- high-aluminum iron ore --- synergistic reduction --- high-manganese iron ore --- hercynite --- fayalite --- flow velocity --- casting speed --- gas flow rate --- flow pattern --- continuous casting --- Cr recovery --- self-reduction briquette --- reaction mechanism --- mold flux --- low fluorine --- internal crack --- surface roughness --- slag film --- vanadium titano-magnetite --- gas-based reduction --- carbon monoxide --- hydrogen --- and nitrogen --- kinetics --- pellet size --- liquid steel --- non-contact measurement --- oxides --- steel-making --- blast furnace --- solid flow --- cold experiment --- direct element method --- Wilcox–Swailes coefficient --- viscosity --- BaO --- CaO/Al2O3 ratio --- modified NPL model --- ultrafine particles exposure --- steelmaking factory --- chemical composition --- devolatilization --- torrefied biomass --- bio-coal --- volatile matter --- iso-conversional method --- Al-TRIP steel --- surface depression --- cracks --- non-metallic inclusion --- mold flux --- reactivity --- hot metal pre-treatment --- desiliconisation --- dephosphorisation --- solid and gaseous oxygen --- fork --- flat steel --- inclusions --- 33MnCrTiB --- slag --- carbon dioxide --- injection --- blast furnace --- converter --- combustion --- oxygen steelmaking --- refining kinetics --- slag formation --- penetration theory --- oxygen blast furnace --- COREX --- static process model --- integrated steel plant --- material flow --- energy consumption --- CO2 emissions --- oil-pipeline steel --- Ca-treatment --- non-metallic inclusions --- electrolytic extraction --- corrosion --- n/a

Sustainability of Fossil Fuels

Author:
ISBN: 9783039212194 9783039212200 Year: Pages: 284 DOI: 10.3390/books978-3-03921-220-0 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

The energy and fuel industries represent an extensive field for the development and implementation of solutions aimed at improving the technological, environmental, and economic performance of technological cycles. In recent years, the issues of ecology and energy security have become especially important. Energy is firmly connected with all spheres of human economic life but, unfortunately, it also has an extremely negative (often fatal) effect on the environment and public health. Depletion of energy resources, the complexity of their extraction, and transportation are also problems of a global scale. Therefore, it is especially important nowadays to try to take care of nature and think about the resources that are necessary for future generations. For scientific teams in different countries, the development of sustainable and safe technologies for the use of fuels in the energy sector will be a challenge in the coming decades

Keywords

coal --- slurry fuel --- combustion --- forest fuels --- biomass --- anthropogenic emission concentration --- municipal solid waste --- coal processing waste --- oil refining waste --- waste management --- composite fuel --- energy production --- fuel activation --- waste-derived fuel --- coal-water slurry --- laser pulse --- syngas --- aerosol --- two-component droplet --- heating --- evaporation --- explosive breakup --- disintegration --- droplet holder material --- hydraulic fracturing --- water retention in shale --- anionic surfactant --- shale gas --- supercritical CO2 --- tectonic coal --- pore structure --- methane desorption --- embedded discrete fracture model --- fractured reservoir simulation --- matrix-fracture transmissibility --- combustion --- methane hydrate --- hydrate dissociation --- PTV method --- transport of tracers --- linear drift effect --- convection–diffusion equation --- enhanced oil recovery --- closed-form analytical solution --- methane --- combustion mechanism --- mechanism reduction --- skeletal mechanism --- Bunsen burner --- covert fault zone --- genetic mechanism --- Qikou Sag --- structure evolution --- oil-controlling mode --- Riedel shear --- Mohr–Coulomb theory --- slurry fuel --- ignition --- combustion --- combustion chamber --- soaring of fuel droplets --- trajectories of fuel droplets --- decorated polyacrylamide --- physical properties --- displacement mechanism --- flow behavior --- enhanced recovery --- injection mode --- coal consumption forecasting --- support vector machine --- improved gravitational search algorithm --- grey relational analysis --- dual string completion --- gas lift --- gas lift rate --- split factor --- gas robbing --- gas lift optimization

Heat and Mass Transfer in Energy Systems

Authors: ---
ISBN: 9783039219827 9783039219834 Year: Pages: 234 DOI: 10.3390/books978-3-03921-983-4 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering --- Technology (General)
Added to DOAB on : 2020-01-30 16:39:46
License:

Loading...
Export citation

Choose an application

Abstract

In recent years, the interest of the scientific community towards efficient energy systems has significantly increased. One of the reasons is certainly related to the change in the temperature of the planet, which has increased by 0.76 °C with respect to preindustrial levels, according to the Intergovernmental Panel on Climate Change (IPCC), and is still increasing. The European Union considers it vital to prevent global warming from exceeding 2 °C with respect to pre-industrial levels, as it has been proven that this will result in irreversible and potentially catastrophic changes. These changes in climate are mainly caused by greenhouse gas emissions related to human activities, and can be drastically reduced by employing energy systems for the heating and cooling of buildings, as well as for power production, characterized by high efficiency levels and/or based on renewable energy sources. This Special Issue, published in the Energies journal, includes 13 contributions from across the world, including a wide range of applications such as hybrid residential renewable energy systems, desiccant-based air handling units, heat exchanges for engine WHR, solar chimney systems, and other interesting topics.

Keywords

bubble absorber --- absorption cooling --- ammonia-lithium nitrate --- plate heat exchanger --- bentonite buffer material --- Ca-type bentonite --- thermal conductivity --- predictive models --- thermosyphon --- two-phase flow --- startup --- phase change --- operating state --- visualization --- fast thermal simulation --- crude oil pipeline --- batch transportation --- body-fitted coordinate-based proper orthogonal decomposition reduced-order model (BFC-POD-ROM) --- transport scheme determination --- waste heat recovery --- exhaust steam --- heat exchanger --- protracted fin --- turbo-electric generator --- exhaust emissions --- R744 --- two-phase ejector --- refrigeration --- dynamic simulation --- low-order model --- object-oriented modelling --- desiccant wheel --- solar heating and cooling --- hygroscopic materials --- dynamic simulations --- energy and environmental analysis --- solar chimney --- air flow --- analytical and experimental solutions --- method of calculation --- steelmaking --- electric arc furnace --- consumption --- electric energy --- melting --- refining --- tapping --- modeling --- linear regression --- genetic programming --- renewables --- ancillary services --- hybrid systems --- thermal storage --- energy storage --- microgrids --- heat pump --- model predictive control --- optimization --- Biot number --- genetic algorithms --- drying --- air-cooled steam turbine generator --- single-channel ventilation --- backflow --- radial ventilation duct --- fluid field --- ground source heat pump --- numerical and experimental studies --- ground-air heat exchanger --- geothermal energy --- computational fluid dynamics --- spirally corrugated pipe

Sustainable Utilization of Metals: Processing, Recovery and Recycling

Author:
ISBN: 9783039288854 / 9783039288861 Year: Pages: 388 DOI: 10.3390/books978-3-03928-886-1 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- Economics
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

The high demand for advanced metallic materials raises the need for an extensive recycling of metals and such a sustainable use of raw materials. ""Sustainable Utilization of Metals - Processing, Recovery and Recycling"" comprises the latest scientific achievements in efficient production of metals and such addresses sustainable resource use as part of the circular economy strategy. This policy drives the present contributions, aiming on the recirculation of EoL-streams such as Waste Electric and Electronic Equipment (WEEE), multi-metal alloys or composite materials back into metal production. This needs a holistic approach, resulting in the maximal avoidance of waste. Considering both aspects, circular economy and material design, recovery and use of minor metals play an essential role, since their importance for technological applications often goes along with a lack of supply on the world market. Additionally, their ignoble character and low concentration in recycling materials cause an insufficient recycling rate of these metals, awarding them the status of “critical metals”. In order to minimize losses and energy consumption, this issue explores concepts for the optimization concerning the interface between mechanical and thermal pre-treatment and metallurgical processes. Such new approaches in material design, structural engineering and substitution are provided in the chapters.

Keywords

laterites --- scandium --- leaching --- precipitation --- solvent extraction --- manganese --- Zinc --- electrolytic lodes and scrapings --- electrolytic manganese --- metallurgy --- hydrometallurgy --- recycling --- sustainable development --- recycling --- spent catalysts --- zinc --- copper --- Bayan Obo --- REE–Nb–Fe ore --- carbothermal reduction --- kinetics --- NMC batteries --- recycling --- leaching --- solvent extraction --- selective precipitation --- hydrometallurgy --- Bayer process --- trace elements --- vanadium --- gallium --- rare earth elements --- lanthanum --- yttrium --- scandium --- karst bauxite --- bauxite residue --- red mud --- indium --- silver --- jarosite --- recycling --- industrial residue --- process development --- selective extraction --- simultaneous recovery --- pyrometallurgy --- lifetime of steel --- steel scrap --- circulation --- industry sector --- dynamic material flow model --- recycling rate --- material flow analysis --- gold --- copper --- WPCBs --- leaching --- physical separation --- Tin recovery --- steelmaking dust --- zinc recycling --- alkaline leaching --- electric arc furnace --- Li-ion battery --- recycling --- pyrolysis --- microwave assisted pyrolysis --- battery pre-treatment --- super-gravity --- rheorefining --- aluminum alloy --- tramp element --- separation --- jarosite residue --- pyrometallurgy --- circular economy --- slag valorization --- metal recovery --- closed-loop circulation --- environmentally friendly process --- enrichment of Ti --- preparation for recovery --- reduction of Co --- precipitation --- thermal treatment --- hydrometallurgy --- recycling --- cold-bonded briquettes --- blast furnace --- desulfurization --- basic oxygen furnace --- dust --- sludge --- fines --- scandium --- anti-solvent crystallization --- solvent extraction --- precipitation --- ammonium scandium hexafluoride --- chemical equilibrium diagram --- aluminium purification --- iron removal --- intermetallic formation --- polythermal section --- cerium --- flotation --- glass polishing waste --- gravity separation --- leaching --- precipitation --- rare-earths --- recycling --- reuse --- solvent extraction --- neodymium --- dimethyl sulfoxide --- electrodeposition --- bauxite residue --- red mud --- ionic liquids --- scandium recovery --- titanium recovery --- NdFeB magnets --- rare earth elements --- recycling --- recycling potential --- neodymium --- dysprosium --- WPCB --- melting behavior --- flash smelting --- cementation --- copper removal --- cavitation --- pyrolysis --- smartphone --- displays --- halogenation --- indium --- volatilization --- thermodynamics --- recycling --- magnesium --- refining --- recycling --- ultra-high purity --- vacuum distillation --- condensation --- oxygen-depolarized cathodes --- silver leaching --- cryogenic pre-treatment --- negative activation energy --- polishing waste --- rare earths --- waste utilization --- characterization --- leaching --- n/a

Listing 1 - 7 of 7
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (7)


License

CC by-nc-nd (7)


Language

eng (4)

english (3)


Year
From To Submit

2020 (5)

2019 (2)