Search results: Found 4

Listing 1 - 4 of 4
Sort by
Partial oxidation of Raffinate II and other mixtures of n-Butane and n-Butenes to maleic anhydride in a fixed-bed reactor

Author:
ISBN: 9783866441996 Year: Pages: VI, 186 p. DOI: 10.5445/KSP/1000007336 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Chemical Engineering
Added to DOAB on : 2019-07-30 20:02:01
License:

Loading...
Export citation

Choose an application

Abstract

The utilisation of the C4 streams of steamcrackers by converting raffinate II to maleic anhydride was studied. The oxidation reactions were investigated in a laboratory-scale fixed-bed reactor to determine reaction kinetics. The effects of pore diffusional resistance were investigated and explained. A two-dimensional pseudo-homogeneous reactor model was used for the simulation of a production-scale fixed-bed reactor. A flow scheme of the reactor section including a recycle was proposed.

Biomass Chars: Elaboration, Characterization and Applications ?

Authors: ---
ISBN: 9783039216628 9783039216635 Year: Pages: 342 DOI: 10.3390/books978-3-03921-663-5 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Agriculture (General) --- Biology --- Science (General)
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Biomass can be converted to energy, biofuels, and bioproducts via thermochemical conversion processes, such as combustion, pyrolysis, and gasification. Combustion technology is most widely applied on an industrial scale. However, biomass gasification and pyrolysis processes are still in the research and development stage. The major products from these processes are syngas, bio-oil, and char (called also biochar for agronomic application). Among these products, biomass chars have received increasing attention for different applications, such as gasification, co-combustion, catalysts or adsorbents precursors, soil amendment, carbon fuel cells, and supercapacitors. This Special Issue provides an overview of biomass char production methods (pyrolysis, hydrothermal carbonization, etc.), characterization techniques (e.g., scanning electronic microscopy, X-ray fluorescence, nitrogen adsorption, Raman spectroscopy, nuclear magnetic resonance spectroscopy, X-ray photoelectron spectroscopy, and temperature programmed desorption and mass spectrometry), their properties, and their suitable recovery processes.

Keywords

biomass production --- multicriteria model --- ELECTRE III --- combustion --- oxygen enrichment --- low-rank coal char --- char oxidation --- reaction kinetics --- salty food waste --- FT-IR --- pyrolysis --- biochar --- NaCl --- hydrothermal carbonization --- anaerobic digestion --- poultry slaughterhouse --- sludge cake --- energy recovery efficiency --- gasification --- kinetic model --- active site --- chemisorption --- hydrothermal carbonization (HTC) --- Chinese reed --- biocrude --- biochar --- high heating value (HHV) --- biochar --- steam --- gasification --- chemical speciation --- AAEMs --- underground coal gasification --- ash layer --- effective diffusion coefficient --- internal diffusion resistance --- pyrolysis --- hydrothermal carbonization --- biochar engineering --- porosity --- nutrients --- polycyclic aromatic hydrocarbon (PAH) --- nitrogen --- biomass --- amino acid --- pyrrole --- NOx --- pyrolysis --- grape marc --- kinetic models --- characterization --- pyrolysis --- Texaco pilot plant --- reactor modelling --- ash fusion temperature (AFT) --- melting phenomenon --- food waste compost --- sawdust --- pyrolysis --- biochar --- thermogravimetric analysis (TGA) --- calorific value --- biogas purification --- coconut shells --- biomass valorization --- textural characterization --- adsorption isotherms --- breakthrough curves --- olive mill solid wastes (OMSWs) --- fixed bed combustor --- pellets --- combustion parameters --- gaseous emissions --- waste wood --- interactions --- interferences --- partial combustion reaction in gasification --- Boudouard reaction in gasification --- MTDATA --- biomass --- steam gasification --- kinetics --- pyrolysis conditions --- thermogravimetric analysis --- characteristic time analysis --- biomass --- combustion --- thermogravimetric analysis --- kinetic parameters --- thermal characteristics --- food waste --- food-waste biochar --- pyrolysis --- NaCl template --- desalination --- biochar --- ash from biomass --- giant miscanthus --- fertilisation --- CO2 adsorption --- CH4 adsorption --- biomass --- activated carbon --- n/a

Towards a Sustainable Management of Mine Wastes: Reprocessing, Reuse, Revalorization and Repository

Authors: ---
ISBN: 9783039281749 9783039281756 Year: Pages: 240 DOI: 10.3390/books978-3-03928-175-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Mining and Metallurgy
Added to DOAB on : 2020-04-07 23:07:08
License:

Loading...
Export citation

Choose an application

Abstract

The need for efficient and sustainable management methods of mine waste is continuously growing all around the world. These waste products often present serious management problems due to their more or less significant amounts and possible environmental threats. This Special Issue highlights the recent and new trends in sustainable mine waste management techniques. Currently, it is essential to sustainably manage mine waste, considering social, economic, environmental and technical aspects. In this Special Issue, insights related to the following issues are highlighted: the problems around mine waste, the fine characterization of mine waste, the latest available technical and environmental solutions to efficiently manage mine waste, including treatment and processing before disposal and high value element recovery, with the view of moving towards defining effective, low-cost and ecofriendly methods, the recycling of mine waste products as alternative resources in different sectors, and finally laboratory, pilot and/or industrial-scale studies related to these topics of research. Scientists and industry and governance stakeholders have to face these new challenges to find the best management practices for the future.

Keywords

copper tailings dump --- leaching --- pH --- mobility --- chemical species --- attenuation mechanisms --- aquatic systems --- Zgounder mine --- silver --- tailings --- low-grade silver ores --- flotation --- mineralogical characterization --- mine waste --- management --- sustainability --- bibliometric analysis --- systematic review --- valorisation --- mine waste --- soil washing --- heap leaching --- dump leaching --- mine drainage --- remediation --- acid mine drainage --- geographical information systems --- paste pH --- siderite --- multivariate analysis --- spatial mapping --- iron ore tailings --- iron recovery --- concrete composite admixtures --- reuse --- rheology --- microstructure --- flow behavior --- cemented paste backfill --- mixing --- recovering alkali --- Bayer red mud --- reaction kinetics --- magnesium oxide --- hydrotalcite-like compounds --- sustainable development --- tailings management --- industrial ecology --- sustainable resource management --- mining waste --- circular economy --- mine waste --- tailings --- gravity separation --- stamp mill --- historic tailings --- metals --- exploration --- economic potential --- LIBS --- core scanner --- acid mine drainage --- alkaline amendments --- cementitious amendments --- kinetic testing --- Joutel mine --- environmental mineralogy --- exploration --- contaminant --- geochemical behavior --- acid mine drainage --- mine tailings --- sulfides --- gold reprocessing --- desulfurization --- flotation --- kinetic test --- mining and mineral processing waste (MMPW) --- anthropogenic mineral resources (AMR) --- long-term storage --- supergene processes --- environmental damage --- loss and lost profits --- AMR processing --- n/a

Biomass Processing for Biofuels, Bioenergy and Chemicals

Authors: --- ---
ISBN: 9783039289097 / 9783039289103 Year: Pages: 428 DOI: 10.3390/books978-3-03928-910-3 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Biomass can be used to produce renewable electricity, thermal energy, transportation fuels (biofuels), and high-value functional chemicals. As an energy source, biomass can be used either directly via combustion to produce heat or indirectly after it is converted to one of many forms of bioenergy and biofuel via thermochemical or biochemical pathways. The conversion of biomass can be achieved using various advanced methods, which are broadly classified into thermochemical conversion, biochemical conversion, electrochemical conversion, and so on. Advanced development technologies and processes are able to convert biomass into alternative energy sources in solid (e.g., charcoal, biochar, and RDF), liquid (biodiesel, algae biofuel, bioethanol, and pyrolysis and liquefaction bio-oils), and gaseous (e.g., biogas, syngas, and biohydrogen) forms. Because of the merits of biomass energy for environmental sustainability, biofuel and bioenergy technologies play a crucial role in renewable energy development and the replacement of chemicals by highly functional biomass. This book provides a comprehensive overview and in-depth technical research addressing recent progress in biomass conversion processes. It also covers studies on advanced techniques and methods for bioenergy and biofuel production.

Keywords

lignocellulose --- pretreatment --- hardwood --- extrusion --- enzymatic digestibility --- bioethanol --- renewable energy --- biofuel --- environment --- technology development --- co-combustion --- sewage sludge --- thermogravimetric analysis --- Fourier transform infrared spectroscopy --- synergistic effect --- single-pellet combustion --- biodiesel --- fatty acid methyl ester --- free fatty acids --- oxidation stability --- antioxidant --- hydrogen --- coffee mucilage --- organic wastes --- dark fermentation --- anaerobic digestion --- biodiesel --- bio-jet fuel --- triacylglycerides --- Fatty Acid Methyl Ester --- lipids --- hydrodeoxygenation --- drop-in fuel --- rubber seed oil --- biodiesel production --- nanomagnetic catalyst --- subcritical methanol --- FAME yield --- Box-Behnken design --- GCI --- biodiesel --- diesel --- combustion --- emission --- renewable energy --- microwave --- free fatty acid --- crude oil --- renewable energy --- biomass --- waste --- black soldier fly larvae (BSFL) --- instar --- lipid --- fatty acid methyl ester (FAME) --- fermentation --- Rancimat method --- butylated hydroxyanisole --- tert-butylhydroquinone --- fatty acid methyl esters --- viscosity --- response surface --- anaerobic treatment --- biogas --- kinetic study --- potato peels --- cow manure --- thermophilic --- mesophilic --- palm oil mill effluent --- acclimatization --- direct carbon fuel cell --- biochar --- pyrolysis --- power density --- pre-treatment --- post-treatment --- combustion characteristics --- injection strategies --- compression ratio --- intake temperature --- torrefaction --- vacuum --- biomass pretreatment --- bioenergy --- energy yield --- biochar --- rice straw --- rice husk --- power generation --- gasification --- alternative fuel --- Rhus typhina biodiesel --- non-edible oil --- base-catalyzed transesterification --- Physico-chemical properties --- concentration polarization --- draw solution --- feed solution --- forward osmosis --- pressure-retarded osmosis --- operating conditions --- membrane fouling --- osmotic membrane --- bioenergy --- biofuel --- nanotechnology --- nano-catalysts --- nano-additives --- crude glycerol --- glycerol carbonate --- dimethyl carbonate --- microwave irradiation --- reaction kinetics

Listing 1 - 4 of 4
Sort by
Narrow your search