Search results:
Found 2
Listing 1  2 of 2 
Sort by

Choose an application
This book deals with applications of quantum mechanical techniques to areas outside of quantum mechanics, socalled quantumlike modeling. Research in this area has grown over the last 15 years. But even already more than 50 years ago, the interaction between Physics Nobelist Pauli and the psychologist Carl Jung in the 1950's on seeking to find analogous uses of the complementarity principle from quantum mechanics in psychology needs noting. This book does NOT want to advance that society is quantum mechanical! The macroscopic world is manifestly not quantum mechanical. But this rules not out that one can use concepts and the mathematical apparatus from quantum physics in a macroscopic environment. A mainstay ingredient of quantum mechanics, is 'quantum probability' and this tool has been proven to be useful in the mathematical modelling of decision making. In the most basic experiment of quantum physics, the double slit experiment, it is known (from the works of A. Khrennikov) that the law of total probability is violated. It is now well documented that several decision making paradoxes in psychology and economics (such as the Ellsberg paradox) do exhibit this violation of the law of total probability. When data is collected with experiments which test 'nonrational' decision making behaviour, one can observe that such data often exhibits a complex noncommutative structure, which may be even more complex than if one considers the structure allied to the basic two slit experiment. The community exploring quantumlike models has tried to address how quantum probability can help in better explaining those paradoxes. Research has now been published in very high standing journals on resolving some of the paradoxes with the mathematics of quantum physics. The aim of this book is to collect the contributions of world's leading experts in quantum like modeling in decision making, psychology, cognition, economics, and finance.
Quantumlike models  mathematical formalism of quantum theory  quantum probability  decision making  psychology  cognition  emotions
Choose an application
The last few years have been characterized by a tremendous development of quantum information and probability and their applications, including quantum computing, quantum cryptography, and quantum random generators. In spite of the successful development of quantum technology, its foundational basis is still not concrete and contains a few sandy and shaky slices. Quantum random generators are one of the most promising outputs of the recent quantum information revolution. Therefore, it is very important to reconsider the foundational basis of this project, starting with the notion of irreducible quantum randomness. Quantum probabilities present a powerful tool to model uncertainty. Interpretations of quantum probability and foundational meaning of its basic tools, starting with the Born rule, are among the topics which will be covered by this issue. Recently, quantum probability has started to play an important role in a few areas of research outside quantum physics—in particular, quantum probabilistic treatment of problems of theory of decision making under uncertainty. Such studies are also among the topics of this issue.
quantum logic  groups  partially defined algebras  quasigroups  viable cultures  quantum information theory  bit commitment  protocol  entropy  entanglement  orthogonality  quantum computation  Gram–Schmidt process  quantum probability  potentiality  complementarity  uncertainty relations  Copenhagen interpretation  indefiniteness  indeterminism  causation  randomness  quantum information  quantum dynamics  entanglement  algebra  causality  geometry  probability  quantum information theory  realism  reality  entropy  correlations  qubits  probability representation  Bayes’ formula  quantum entanglement  threequbit random states  entanglement classes  entanglement polytope  anisotropic invariants  quantum random number  vacuum state  maximization of quantum conditional minentropy  quantum logics  quantum probability  holistic semantics  epistemic operations  Bell inequalities  algorithmic complexity  Borel normality  Bayesian inference  model selection  random numbers  quantumlike models  operational approach  information interpretation of quantum theory  social laser  social energy  quantum information field  social atom  Bose–Einstein statistics  bandwagon effect  social thermodynamics  resonator of social laser  master equation for socioinformation excitations  quantum contextuality  Kochen–Specker sets  MMP hypergraphs  Greechie diagrams  quantum foundations  probability  irreducible randomness  random number generators  quantum technology  entanglement  quantumlike models for social stochasticity  contextuality
Listing 1  2 of 2 
Sort by
