Search results: Found 4

Listing 1 - 4 of 4
Sort by
PrPSc Prions: State of the Art

Authors: ---
ISBN: 9783038973089 9783038973096 Year: Pages: 210 DOI: 10.3390/books978-3-03897-309-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Biology
Added to DOAB on : 2018-11-07 10:54:14
License:

Loading...
Export citation

Choose an application

Abstract

Prion diseases, or transmissible spongiform encephalopathies (TSEs), are a group of fatal and transmissible neurodegenerative disorders characterized by long incubation periods, misfolded prion protein (PrP) deposition, and usually spongiform vacuolation. These devastating diseases affect many mammals, with the best known examples being Creutzfeldt–Jakob disease (CJD), fatal familial insomnia (FFI), or Kuru in humans; and scrapie in sheep, bovine spongiform encephalopathy (BSE) in cattle, and chronic wasting disease (CWD) in cervids. Despite major achievements in research of TSEs, there are still many unresolved key issues that hamper the development of effective therapies. However, the last decade has been particularly prolific in advances in the prion field. Among others, prion propagation in vitro has been achieved, leading to new diagnostic methods; the basic architecture of infectious prions has been deciphered; new prion disease types have been described in humans and other animals; and prion disorders have emerged in places that had not previously reported the disorders, as is the case for CWD in Europe.This Special Issue will focus on the state of the art of our knowledge of PrPSc: on what we know about its structure and propagation, the basis of strains and transmission barriers, the mechanisms of PrPSc toxicity, the possible function of PrPSc’s properly folded precursor, PrPC and its evolutionary history, and recent technical breakthroughs in diagnostics and therapy development among other key aspects of PrPSc prion biology.

Protein Solubility and Aggregation in Bacteria

Author:
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889199761 Year: Pages: 127 DOI: 10.3389/978-2-88919-976-1 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Microbiology
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

Proteins suffer many conformational changes and interactions through their life, from their synthesis at ribosomes to their controlled degradation. Only folded and soluble proteins are functional. Thus, protein folding and solubility are controlled genetically, transcriptionally, and at the protein sequence level. In addition, a well-conserved cellular machinery assists the folding of polypeptides to avoid misfolding and ensure the attainment of soluble and functional structures. When these redundant protective strategies are overcome, misfolded proteins are recruited into aggregates. Recombinant protein production is an essential tool for the biotechnology industry and also supports expanding areas of basic and biomedical research, including structural genomics and proteomics. Although bacteria still represent a convenient production system, many recombinant polypeptides produced in prokaryotic hosts undergo irregular or incomplete folding processes that usually result in their accumulation as insoluble aggregates, narrowing thus the spectrum of protein-based drugs that are available in the biotechnology market. In fact, the solubility of bacterially produced proteins is of major concern in production processes, and many orthogonal strategies have been exploited to try to increase soluble protein yields. Importantly, contrary to the usual assumption that the bacterial aggregates formed during protein production are totally inactive, the presence of a fraction of molecules in a native-like structure in these assemblies endorse them with a certain degree of biological activity, a property that is allowing the use of bacteria as factories to produce new functional materials and catalysts. The protein embedded in intracellular bacterial deposits might display different conformations, but they are usually enriched in beta-sheet-rich assemblies resembling the amyloid fibrils characteristic of several human neurodegenerative diseases. This makes bacterial cells simple, but biologically relevant model systems to address the mechanisms behind amyloid formation and the cellular impact of protein aggregates. Interestingly, bacteria also exploit the structural principles behind amyloid formation for functional purposes such as adhesion or cytotoxicity. In the present research topic we collect papers addressing all the issues mentioned above from both the experimental and computational point of view.

Promiscuous functions of the prion protein gene family

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889196050 Year: Pages: 113 DOI: 10.3389/978-2-88919-605-0 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Biology
Added to DOAB on : 2016-08-16 10:34:25
License:

Loading...
Export citation

Choose an application

Abstract

The cellular prion protein PrPC is a ubiquitous GPI-anchored protein. While PrPC has been the focus of intense research for its involvement in a group of neurodegenerative disorders known as transmissible spongiform encephalopathies (TSE), much less attention has been devoted to its physiological function. This notably relates to the lack of obvious abnormalities of mice, goat or cattle lacking PrPC. This apparently normal phenotype in these PrPC-deficient animals however contrasts with the very high degree of conservation of the prion protein gene (Prnp) in mammalian species (over 80%), and the presence of genes with similarities to Prnp in birds, reptiles, amphibians and fish. This high conservation together with its ubiquitous expression, - albeit at highest levels in the brain-, suggest that PrPC has major physiological functions. Dissecting PrPC function is further complicated by the occurrence, in mammals, of two potentially partially redundant homologues, Doppel, and Shadoo. The biological overlaps between members of the prion protein family are still under investigation and much debated. Similarly, although in vitro analyses have suggested various functions for PrPC, notably in cell death and survival processes, some have yielded conflicting results and/or discrepancies with in vivo studies. This Research Topic brings together the accumulated knowledge regarding the biological roles of the prion protein family, from the animal to the molecular scale.

Molecular Mechanism of Alzheimer's Disease

Author:
ISBN: 9783039214075 / 9783039214082 Year: Pages: 228 DOI: 10.3390/books978-3-03921-408-2 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

Alzheimer’s disease (AD) is an age-related neurological disease that affects tens of millions of people, in addition to their carers. Hallmark features of AD include plaques composed of amyloid beta, as well as neurofibrillary tangles of tau protein. However, despite more than a century of study, the cause of Alzheimer’s disease remains unresolved. The roles of amyloid beta and tau are being questioned and other causes of AD are now under consideration. The contributions of researchers, model organisms, and various hypotheses will be examined in this Special Issue.

Keywords

?-secretase --- amyloid beta --- calcium signaling --- drug target discovery --- endoplasmic reticulum --- inositol 1,4,5-trisphosphate receptor --- ion channel --- oxidative stress --- ryanodine receptor --- therapy --- amyloid-? oligomer --- protein aggregation --- A?O receptors --- Alzheimer’s disease --- neurodegeneration --- amyloid ? --- Alzheimer’s disease --- cognitive function --- dairy products --- dementia --- inflammation --- microglia --- Alzheimer’s disease --- yeast --- Tau --- amyloid ? --- ubiquitin --- aggregation --- oligomerization --- prion --- CDK5R1 --- lncRNAs --- Alzheimer’s disease --- miR-15/107 --- NEAT1 --- HOTAIR --- MALAT1 --- heat shock response --- heat shock protein --- Alzheimer’s disease --- beta amyloid --- yeast --- Alzheimer’s disease --- complement receptor 1 --- CR1 length polymorphism --- CR1 density --- complement C3b/C4b receptor --- complement --- dementia --- molecular biology --- neurosciences --- genetic risk --- Alzheimer’s disease --- brain glucose metabolism --- neuronal differentiation --- neuronal degeneration --- Prolyl isomerases --- Pin1 --- type 2 diabetes --- type 3 diabetes --- miR-34c --- dendritic spine --- Alzheimer’s disease --- Alzheimer’s disease --- positron emission tomography (PET) --- magnetic resonance imaging (MRI) --- Alzheimer’s disease --- cystathionine-?-lyase CTH gene --- DNA methylation --- epigenetics --- epigenome-wide association study --- methylome --- methylenetetrahydrofolate reductase MTHFR gene --- nutrition --- S-adenosylmethionine --- vitamin B complex --- Alzheimer’s disease --- sleep disturbance --- sleep fragmentation --- slow-wave sleep --- amyloid beta --- tau --- proteostasis --- default-mode network --- cognitive behavioral therapy for insomnia --- APOE gene --- apolipoprotein E --- DNA methylation --- mild cognitive impairment --- Hispanics

Listing 1 - 4 of 4
Sort by
Narrow your search
-->