Search results: Found 5

Listing 1 - 5 of 5
Sort by
Plasma based Synthesis and Modification of Nanomaterials

Author:
ISBN: 9783039213955 / 9783039213962 Year: Pages: 160 DOI: 10.3390/books978-3-03921-396-2 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

This book, entitled “Plasma-Based Synthesis and Modification of Nanomaterials” is a collection of nine original research articles devoted to the application of different atmospheric pressure (APPs) and low-pressure (LPPs) plasmas for the synthesis or modification of various nanomaterials (NMs) of exceptional properties. These articles also show the structural and morphological characterization of the synthesized NMs and their further interesting and unique applications in different areas of science and technology. The readers interested in the capabilities of plasma-based treatments will quickly be convinced that APPs and LPPs enable one to efficiently synthesize or modify differentiated NMs using a minimal number of operations. Indeed, the presented procedures are eco-friendly and usually involve single-step processes, thus considerably lowering labor investment and costs. As a result, the production of new NMs and their functionalization is more straightforward and can be carried out on a much larger scale compared to other methods and procedures involving complex chemical treatments and processes. The size and morphology, as well as the structural and optical properties of the resulting NMs are tunable and tailorable. In addition to the desirable and reproducible physical dimensions, crystallinity, functionality, and spectral properties of the resultant NMs, the NMs fabricated and/or modified with the aid of APPs are commonly ready-to-use prior to their specific applications, without any initial pre-treatments.

Synthesis and Applications of Biopolymer Composites

Authors: ---
ISBN: 9783039211326 9783039211333 Year: Pages: 312 DOI: 10.3390/books978-3-03921-133-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- Chemical Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

This book, as a collection of 17 research articles, provides a selection of the most recent advances in the synthesis, characterization, and applications of environmentally friendly and biodegradable biopolymer composites and nanocomposites. Recently, the demand has been growing for a clean and pollution-free environment and an evident target regarding the minimization of fossil fuel usage. Therefore, much attention has been focused on research to replace petroleum-based commodity plastics by biodegradable materials arising from biological and renewable resources. Biopolymers—polymers produced from natural sources either chemically from a biological material or biosynthesized by living organisms—are suitable alternatives for addressing these issues due to their outstanding properties, including good barrier performance, biodegradation ability, and low weight. However, they generally possess poor mechanical properties, a short fatigue life, low chemical resistance, poor long-term durability, and limited processing capability. In order to overcome these deficiencies, biopolymers can be reinforced with fillers or nanofillers (with at least one of their dimensions in the nanometer range). Bionanocomposites are advantageous for a wide range of applications, such as in medicine, pharmaceutics, cosmetics, food packaging, agriculture, forestry, electronics, transport, construction, and many more.

Keywords

nanocellulose --- protease sensor --- human neutrophil elastase --- peptide-cellulose conformation --- aerogel --- glycol chitosan --- ?-tocopherol succinate --- amphiphilic polymer --- micelles --- paclitaxel --- chitosan --- PVA --- nanofibers --- electrospinning --- nanocellulose --- carbon nanotubes --- nanocomposite --- conductivity --- surfactant --- Poly(propylene carbonate) --- thermoplastic polyurethane --- compatibility --- toughness --- biopolyester --- compatibilizer --- cellulose --- elastomer --- toughening --- biodisintegration --- heat deflection temperature --- biopolymers composites --- MgO whiskers --- PLLA --- in vitro degradation --- natural rubber --- plasticized starch --- polyfunctional monomers --- physical and mechanical properties --- cross-link density --- water uptake --- chitosan --- deoxycholic acid --- folic acid --- amphiphilic polymer --- micelles --- paclitaxel --- silk fibroin --- glass transition --- DMA --- FTIR --- stress-strain --- active packaging materials --- alginate films --- antimicrobial agents --- antioxidant activity --- biodegradable films --- essential oils --- polycarbonate --- thermal decomposition kinetics --- TG/FTIR --- Py-GC/MS --- wheat gluten --- potato protein --- chemical pre-treatment --- structural profile --- tensile properties --- biocomposites --- natural fibers --- poly(3-hydroxybutyrate-3-hydroxyvalerate) --- biodegradation --- impact properties --- chitin nanofibrils --- poly(lactic acid) --- nanocomposites --- bio-based polymers --- natural fibers --- biomass --- biocomposites --- fiber/matrix adhesion --- bio-composites --- mechanical properties --- poly(lactic acid) --- cellulose fibers --- n/a

Sustainable Utilization of Metals: Processing, Recovery and Recycling

Author:
ISBN: 9783039288854 / 9783039288861 Year: Pages: 388 DOI: 10.3390/books978-3-03928-886-1 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- Economics
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

The high demand for advanced metallic materials raises the need for an extensive recycling of metals and such a sustainable use of raw materials. ""Sustainable Utilization of Metals - Processing, Recovery and Recycling"" comprises the latest scientific achievements in efficient production of metals and such addresses sustainable resource use as part of the circular economy strategy. This policy drives the present contributions, aiming on the recirculation of EoL-streams such as Waste Electric and Electronic Equipment (WEEE), multi-metal alloys or composite materials back into metal production. This needs a holistic approach, resulting in the maximal avoidance of waste. Considering both aspects, circular economy and material design, recovery and use of minor metals play an essential role, since their importance for technological applications often goes along with a lack of supply on the world market. Additionally, their ignoble character and low concentration in recycling materials cause an insufficient recycling rate of these metals, awarding them the status of “critical metals”. In order to minimize losses and energy consumption, this issue explores concepts for the optimization concerning the interface between mechanical and thermal pre-treatment and metallurgical processes. Such new approaches in material design, structural engineering and substitution are provided in the chapters.

Keywords

laterites --- scandium --- leaching --- precipitation --- solvent extraction --- manganese --- Zinc --- electrolytic lodes and scrapings --- electrolytic manganese --- metallurgy --- hydrometallurgy --- recycling --- sustainable development --- recycling --- spent catalysts --- zinc --- copper --- Bayan Obo --- REE–Nb–Fe ore --- carbothermal reduction --- kinetics --- NMC batteries --- recycling --- leaching --- solvent extraction --- selective precipitation --- hydrometallurgy --- Bayer process --- trace elements --- vanadium --- gallium --- rare earth elements --- lanthanum --- yttrium --- scandium --- karst bauxite --- bauxite residue --- red mud --- indium --- silver --- jarosite --- recycling --- industrial residue --- process development --- selective extraction --- simultaneous recovery --- pyrometallurgy --- lifetime of steel --- steel scrap --- circulation --- industry sector --- dynamic material flow model --- recycling rate --- material flow analysis --- gold --- copper --- WPCBs --- leaching --- physical separation --- Tin recovery --- steelmaking dust --- zinc recycling --- alkaline leaching --- electric arc furnace --- Li-ion battery --- recycling --- pyrolysis --- microwave assisted pyrolysis --- battery pre-treatment --- super-gravity --- rheorefining --- aluminum alloy --- tramp element --- separation --- jarosite residue --- pyrometallurgy --- circular economy --- slag valorization --- metal recovery --- closed-loop circulation --- environmentally friendly process --- enrichment of Ti --- preparation for recovery --- reduction of Co --- precipitation --- thermal treatment --- hydrometallurgy --- recycling --- cold-bonded briquettes --- blast furnace --- desulfurization --- basic oxygen furnace --- dust --- sludge --- fines --- scandium --- anti-solvent crystallization --- solvent extraction --- precipitation --- ammonium scandium hexafluoride --- chemical equilibrium diagram --- aluminium purification --- iron removal --- intermetallic formation --- polythermal section --- cerium --- flotation --- glass polishing waste --- gravity separation --- leaching --- precipitation --- rare-earths --- recycling --- reuse --- solvent extraction --- neodymium --- dimethyl sulfoxide --- electrodeposition --- bauxite residue --- red mud --- ionic liquids --- scandium recovery --- titanium recovery --- NdFeB magnets --- rare earth elements --- recycling --- recycling potential --- neodymium --- dysprosium --- WPCB --- melting behavior --- flash smelting --- cementation --- copper removal --- cavitation --- pyrolysis --- smartphone --- displays --- halogenation --- indium --- volatilization --- thermodynamics --- recycling --- magnesium --- refining --- recycling --- ultra-high purity --- vacuum distillation --- condensation --- oxygen-depolarized cathodes --- silver leaching --- cryogenic pre-treatment --- negative activation energy --- polishing waste --- rare earths --- waste utilization --- characterization --- leaching --- n/a

Biomass Processing for Biofuels, Bioenergy and Chemicals

Authors: --- ---
ISBN: 9783039289097 / 9783039289103 Year: Pages: 428 DOI: 10.3390/books978-3-03928-910-3 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Biomass can be used to produce renewable electricity, thermal energy, transportation fuels (biofuels), and high-value functional chemicals. As an energy source, biomass can be used either directly via combustion to produce heat or indirectly after it is converted to one of many forms of bioenergy and biofuel via thermochemical or biochemical pathways. The conversion of biomass can be achieved using various advanced methods, which are broadly classified into thermochemical conversion, biochemical conversion, electrochemical conversion, and so on. Advanced development technologies and processes are able to convert biomass into alternative energy sources in solid (e.g., charcoal, biochar, and RDF), liquid (biodiesel, algae biofuel, bioethanol, and pyrolysis and liquefaction bio-oils), and gaseous (e.g., biogas, syngas, and biohydrogen) forms. Because of the merits of biomass energy for environmental sustainability, biofuel and bioenergy technologies play a crucial role in renewable energy development and the replacement of chemicals by highly functional biomass. This book provides a comprehensive overview and in-depth technical research addressing recent progress in biomass conversion processes. It also covers studies on advanced techniques and methods for bioenergy and biofuel production.

Keywords

lignocellulose --- pretreatment --- hardwood --- extrusion --- enzymatic digestibility --- bioethanol --- renewable energy --- biofuel --- environment --- technology development --- co-combustion --- sewage sludge --- thermogravimetric analysis --- Fourier transform infrared spectroscopy --- synergistic effect --- single-pellet combustion --- biodiesel --- fatty acid methyl ester --- free fatty acids --- oxidation stability --- antioxidant --- hydrogen --- coffee mucilage --- organic wastes --- dark fermentation --- anaerobic digestion --- biodiesel --- bio-jet fuel --- triacylglycerides --- Fatty Acid Methyl Ester --- lipids --- hydrodeoxygenation --- drop-in fuel --- rubber seed oil --- biodiesel production --- nanomagnetic catalyst --- subcritical methanol --- FAME yield --- Box-Behnken design --- GCI --- biodiesel --- diesel --- combustion --- emission --- renewable energy --- microwave --- free fatty acid --- crude oil --- renewable energy --- biomass --- waste --- black soldier fly larvae (BSFL) --- instar --- lipid --- fatty acid methyl ester (FAME) --- fermentation --- Rancimat method --- butylated hydroxyanisole --- tert-butylhydroquinone --- fatty acid methyl esters --- viscosity --- response surface --- anaerobic treatment --- biogas --- kinetic study --- potato peels --- cow manure --- thermophilic --- mesophilic --- palm oil mill effluent --- acclimatization --- direct carbon fuel cell --- biochar --- pyrolysis --- power density --- pre-treatment --- post-treatment --- combustion characteristics --- injection strategies --- compression ratio --- intake temperature --- torrefaction --- vacuum --- biomass pretreatment --- bioenergy --- energy yield --- biochar --- rice straw --- rice husk --- power generation --- gasification --- alternative fuel --- Rhus typhina biodiesel --- non-edible oil --- base-catalyzed transesterification --- Physico-chemical properties --- concentration polarization --- draw solution --- feed solution --- forward osmosis --- pressure-retarded osmosis --- operating conditions --- membrane fouling --- osmotic membrane --- bioenergy --- biofuel --- nanotechnology --- nano-catalysts --- nano-additives --- crude glycerol --- glycerol carbonate --- dimethyl carbonate --- microwave irradiation --- reaction kinetics

Ironmaking and Steelmaking

Authors: ---
ISBN: 9783039213290 9783039213306 Year: Pages: 464 DOI: 10.3390/books978-3-03921-330-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Physics (General)
Added to DOAB on : 2019-12-09 16:10:12
License:

Loading...
Export citation

Choose an application

Abstract

Steel is a critical material in our societies and will remain an important one for a long time into the future. In the last two decades, the world steel industry has gone through drastic changes and this is predicted to continue in the future. The Asian countries (e.g. China, India) have been dominant in the production of steel creating global over-capacity, while the steel industry in the developed countries have made tremendous efforts to reinforce its global leadership in process technology and product development, and remain sustainable and competitive. The global steel industry is also facing various grand challenges in strict environmental regulation, new energy and materials sources, and ever-increasing customer requirements for high quality steel products, which has been addressed accordingly by the global iron and steel community. This Special Issue, “Ironmaking and Steelmaking”, released by the journal Metals, published 33 high quality articles from the international iron and steel community, covering the state-of-the-art of the ironmaking and steelmaking processes. This includes fundamental understanding, experimental investigation, pilot plant trials, industrial applications and big data utilization in the improvement and optimization of existing processes, and research and development in transformative technologies. It is hoped that the creation of this special issue as a scientific platform will help drive the iron and steel community to build a sustainable steel industry.

Keywords

ironmaking --- microwaves --- carbothermal reduction --- iron oxides --- emission spectrum --- ore-carbon briquette --- CO–CO2 atmosphere --- simulation --- re-oxidation --- reduction --- electroslag cladding --- high speed steel --- ductile cast iron --- composite roll --- bonding interface --- high-phosphorus iron ore --- fluorapatite --- carbothermal reduction --- vaporization dephosphorization --- iron ore pellets --- compressive strength (CS) --- prediction model --- artificial neural network --- principal component analysis --- crystallization behaviors --- crystallization rate --- anosovite crystals --- silicate crystals --- titanium slag --- blast furnace --- copper stave --- hydrogen attack --- slag crust --- heat-affected zone --- high heat input welding --- Ca deoxidation --- inclusion control --- intragranular acicular ferrite --- concentrate --- iron ore --- agglomerate --- structure --- phase analysis --- Mg deoxidation --- inclusions --- Al addition --- high-heat-input welding --- heat-affected zone --- toughness --- shot peening --- Barkhausen noise --- crystallite size --- carbon composite pellet --- direct reduction --- shrinkage --- kinetics --- rotary hearth furnace --- hydrogen plasma --- smelting reduction --- HPSR --- iron oxide --- plasma arc --- ionization degree --- sulfur distribution ratio --- liquid area --- carbon-saturated iron --- phosphate capacity --- sulfide capacity --- phosphorus distribution ratio --- sulfur distribution ratio --- evaluation of coupling relationship --- secondary refining process, CaO–based slags --- iron sulfate --- TG analysis --- thermal treatment --- iron oxide --- kinetics --- activation energy --- high-aluminum iron ore --- synergistic reduction --- high-manganese iron ore --- hercynite --- fayalite --- flow velocity --- casting speed --- gas flow rate --- flow pattern --- continuous casting --- Cr recovery --- self-reduction briquette --- reaction mechanism --- mold flux --- low fluorine --- internal crack --- surface roughness --- slag film --- vanadium titano-magnetite --- gas-based reduction --- carbon monoxide --- hydrogen --- and nitrogen --- kinetics --- pellet size --- liquid steel --- non-contact measurement --- oxides --- steel-making --- blast furnace --- solid flow --- cold experiment --- direct element method --- Wilcox–Swailes coefficient --- viscosity --- BaO --- CaO/Al2O3 ratio --- modified NPL model --- ultrafine particles exposure --- steelmaking factory --- chemical composition --- devolatilization --- torrefied biomass --- bio-coal --- volatile matter --- iso-conversional method --- Al-TRIP steel --- surface depression --- cracks --- non-metallic inclusion --- mold flux --- reactivity --- hot metal pre-treatment --- desiliconisation --- dephosphorisation --- solid and gaseous oxygen --- fork --- flat steel --- inclusions --- 33MnCrTiB --- slag --- carbon dioxide --- injection --- blast furnace --- converter --- combustion --- oxygen steelmaking --- refining kinetics --- slag formation --- penetration theory --- oxygen blast furnace --- COREX --- static process model --- integrated steel plant --- material flow --- energy consumption --- CO2 emissions --- oil-pipeline steel --- Ca-treatment --- non-metallic inclusions --- electrolytic extraction --- corrosion --- n/a

Listing 1 - 5 of 5
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (5)


License

CC by-nc-nd (5)


Language

eng (3)

english (2)


Year
From To Submit

2020 (3)

2019 (2)