Search results: Found 8

Listing 1 - 8 of 8
Sort by
Optimization Methods Applied to Power Systems: Volume 1

Authors: ---
ISBN: 9783039211302 9783039211319 Year: Pages: 382 DOI: 10.3390/books978-3-03921-131-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

This book presents an interesting sample of the latest advances in optimization techniques applied to electrical power engineering. It covers a variety of topics from various fields, ranging from classical optimization such as Linear and Nonlinear Programming and Integer and Mixed-Integer Programming to the most modern methods based on bio-inspired metaheuristics. The featured papers invite readers to delve further into emerging optimization techniques and their real application to case studies such as conventional and renewable energy generation, distributed generation, transport and distribution of electrical energy, electrical machines and power electronics, network optimization, intelligent systems, advances in electric mobility, etc.

Keywords

Cable joint --- internal defect --- thermal probability density --- power system optimization --- optimal power flow --- developed grew wolf optimizer --- energy internet --- prosumer --- energy management --- consensus --- demand response --- day-ahead load forecasting --- modular predictor --- feature selection --- micro-phasor measurement unit --- mutual information theory --- stochastic state estimation --- two-point estimation method --- JAYA algorithm --- multi-population method (MP) --- chaos optimization algorithm (COA) --- economic load dispatch problem (ELD) --- optimization methods --- constrained parameter estimation --- extended Kalman filter --- power systems --- C&I particle swarm optimization --- ringdown detection --- optimal reactive power dispatch --- loss minimization --- voltage deviation --- hybrid method --- tabu search --- particle swarm optimization --- artificial lighting --- simulation --- calibration --- radiance --- GenOpt --- street light points --- DC optimal power flow --- power transfer distribution factors --- generalized generation distribution factors --- unit commitment --- adaptive consensus algorithm --- distributed heat-electricity energy management --- eight searching sub-regions --- islanded microgrid --- dragonfly algorithm --- metaheuristic --- optimal power flow --- particle swarm optimization --- CCHP system --- energy storage --- off-design performance --- dynamic solving framework --- battery energy storage system --- micro grid --- MILP --- PCS efficiency --- piecewise linear techniques --- renewable energy sources --- optimal operation --- UC --- demand bidding --- demand response --- genetic algorithm --- load curtailment --- optimization --- hybrid renewable energy system --- pumped-hydro energy storage --- off-grid --- optimization --- HOMER software --- rural electrification --- sub-Saharan Africa --- Cameroon --- building energy management system --- HVAC system --- energy storage system --- energy flow model --- dependability --- sustainability --- data center --- power architectures --- optimization --- AC/DC hybrid active distribution --- hierarchical scheduling --- multi-stakeholders --- discrete wind driven optimization --- multiobjective optimization --- optimal power flow --- metaheuristic --- wind energy --- photovoltaic --- smart grid --- transformer-fault diagnosis --- principal component analysis --- particle swarm optimization --- support vector machine --- wind power --- integration assessment --- interactive load --- considerable decomposition --- controllable response --- SOCP relaxations --- optimal power flow --- current margins --- affine arithmetic --- interval variables --- optimizing-scenarios method --- power flow --- wind power --- active distribution system --- virtual power plant --- stochastic optimization --- decentralized and collaborative optimization --- genetic algorithm --- multi-objective particle swarm optimization algorithm --- artificial bee colony --- IEEE Std. 80-2000 --- Schwarz’s equation --- fuzzy algorithm --- radial basis function --- neural network --- ETAP --- distributed generations (DGs) --- distribution network reconfiguration --- runner-root algorithm (RRA) --- inter-turn shorted-circuit fault (ISCF) --- strong track filter (STF) --- linear discriminant analysis (LDA) --- switched reluctance machine (SRM) --- charging/discharging --- electric vehicle --- energy management --- genetic algorithm --- intelligent scatter search --- electric vehicles --- heterogeneous networks --- demand uncertainty --- power optimization --- Stackelberg game --- power system unit commitment --- hybrid membrane computing --- cross-entropy --- the genetic algorithm based P system --- the biomimetic membrane computing --- transient stability --- two-stage feature selection --- particle encoding method --- fitness function --- power factor compensation --- non-sinusoidal circuits --- geometric algebra --- evolutionary algorithms --- electric power contracts --- electric energy costs --- cost minimization --- evolutionary computation --- bio-inspired algorithms --- congestion management --- low-voltage networks --- multi-objective particle swarm optimization --- affinity propagation clustering --- optimal congestion threshold --- optimization --- magnetic field mitigation --- overhead --- underground --- passive shielding --- active shielding --- MV/LV substation --- n/a

Optimization Methods Applied to Power Systems: Volume 2

Authors: ---
ISBN: 9783039211562 9783039211579 Year: Pages: 306 DOI: 10.3390/books978-3-03921-157-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

This book presents an interesting sample of the latest advances in optimization techniques applied to electrical power engineering. It covers a variety of topics from various fields, ranging from classical optimization such as Linear and Nonlinear Programming and Integer and Mixed-Integer Programming to the most modern methods based on bio-inspired metaheuristics. The featured papers invite readers to delve further into emerging optimization techniques and their real application to case studies such as conventional and renewable energy generation, distributed generation, transport and distribution of electrical energy, electrical machines and power electronics, network optimization, intelligent systems, advances in electric mobility, etc.

Keywords

Cable joint --- internal defect --- thermal probability density --- power system optimization --- optimal power flow --- developed grew wolf optimizer --- energy internet --- prosumer --- energy management --- consensus --- demand response --- day-ahead load forecasting --- modular predictor --- feature selection --- micro-phasor measurement unit --- mutual information theory --- stochastic state estimation --- two-point estimation method --- JAYA algorithm --- multi-population method (MP) --- chaos optimization algorithm (COA) --- economic load dispatch problem (ELD) --- optimization methods --- constrained parameter estimation --- extended Kalman filter --- power systems --- C&I particle swarm optimization --- ringdown detection --- optimal reactive power dispatch --- loss minimization --- voltage deviation --- hybrid method --- tabu search --- particle swarm optimization --- artificial lighting --- simulation --- calibration --- radiance --- GenOpt --- street light points --- DC optimal power flow --- power transfer distribution factors --- generalized generation distribution factors --- unit commitment --- adaptive consensus algorithm --- distributed heat-electricity energy management --- eight searching sub-regions --- islanded microgrid --- dragonfly algorithm --- metaheuristic --- optimal power flow --- particle swarm optimization --- CCHP system --- energy storage --- off-design performance --- dynamic solving framework --- battery energy storage system --- micro grid --- MILP --- PCS efficiency --- piecewise linear techniques --- renewable energy sources --- optimal operation --- UC --- demand bidding --- demand response --- genetic algorithm --- load curtailment --- optimization --- hybrid renewable energy system --- pumped-hydro energy storage --- off-grid --- optimization --- HOMER software --- rural electrification --- sub-Saharan Africa --- Cameroon --- building energy management system --- HVAC system --- energy storage system --- energy flow model --- dependability --- sustainability --- data center --- power architectures --- optimization --- AC/DC hybrid active distribution --- hierarchical scheduling --- multi-stakeholders --- discrete wind driven optimization --- multiobjective optimization --- optimal power flow --- metaheuristic --- wind energy --- photovoltaic --- smart grid --- transformer-fault diagnosis --- principal component analysis --- particle swarm optimization --- support vector machine --- wind power --- integration assessment --- interactive load --- considerable decomposition --- controllable response --- SOCP relaxations --- optimal power flow --- current margins --- affine arithmetic --- interval variables --- optimizing-scenarios method --- power flow --- wind power --- active distribution system --- virtual power plant --- stochastic optimization --- decentralized and collaborative optimization --- genetic algorithm --- multi-objective particle swarm optimization algorithm --- artificial bee colony --- IEEE Std. 80-2000 --- Schwarz’s equation --- fuzzy algorithm --- radial basis function --- neural network --- ETAP --- distributed generations (DGs) --- distribution network reconfiguration --- runner-root algorithm (RRA) --- inter-turn shorted-circuit fault (ISCF) --- strong track filter (STF) --- linear discriminant analysis (LDA) --- switched reluctance machine (SRM) --- charging/discharging --- electric vehicle --- energy management --- genetic algorithm --- intelligent scatter search --- electric vehicles --- heterogeneous networks --- demand uncertainty --- power optimization --- Stackelberg game --- power system unit commitment --- hybrid membrane computing --- cross-entropy --- the genetic algorithm based P system --- the biomimetic membrane computing --- transient stability --- two-stage feature selection --- particle encoding method --- fitness function --- power factor compensation --- non-sinusoidal circuits --- geometric algebra --- evolutionary algorithms --- electric power contracts --- electric energy costs --- cost minimization --- evolutionary computation --- bio-inspired algorithms --- congestion management --- low-voltage networks --- multi-objective particle swarm optimization --- affinity propagation clustering --- optimal congestion threshold --- optimization --- magnetic field mitigation --- overhead --- underground --- passive shielding --- active shielding --- MV/LV substation --- n/a

Mathematical Methods in Applied Sciences

Author:
ISBN: 9783039284962 9783039284979 Year: Pages: 160 DOI: 10.3390/books978-3-03928-497-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Mathematics
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

This book includes the seven papers that contributed to the Special Issue of Mathematics entitled “Mathematical Methods in Applied Sciences”. The papers are authored by eminent specialists and aim at presenting to a broad audience some mathematical models which appear in different aspects of modern life. New results in Computational Mathematics are given as well. Emphasis is on Medicine and Public Health, in relation also with Social Sciences. The models in this collection apply in particular to the study of brain cells during a stroke, training management efficiency for elite athletes, and optimal surgical operation scheduling. Other models concern Industry and Economy, as well as Biology and Chemistry. Numerical Methods are represented in particular by scattered data interpolation, spectral collocation, and the use of eigenvalues and eigenvectors of the Laplacian matrix. This book will appeal to scientists, teachers, and graduate students in Mathematics, in particular Numerical Analysis, and will be of interest for scholars in Applied Sciences, particularly in Medicine and Public Health.

Distributed Energy Resources Management 2018

Authors: ---
ISBN: 9783039281701 9783039281718 Year: Pages: 286 DOI: 10.3390/books978-3-03928-171-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering --- Technology (General)
Added to DOAB on : 2020-01-30 16:39:46
License:

Loading...
Export citation

Choose an application

Abstract

The Special Issue Distributed Energy Resources Management 2018 includes 13 papers, and is a continuation of the Special Issue Distributed Energy Resources Management. The success of the previous edition shows the unquestionable relevance of distributed energy resources in the operation of power and energy systems at both the distribution level and at the wider power system level. Improving the management of distributed energy resources makes it possible to accommodate the higher penetration of intermittent distributed generation and electric vehicle charging. Demand response programs, namely the ones with a distributed nature, allow the consumers to contribute to the increased system efficiency while receiving benefits. This book addresses the management of distributed energy resources, with a focus on methods and techniques to achieve an optimized operation, in order to aggregate the resources namely in the scope of virtual power players and other types of aggregators, and to remunerate them. The integration of distributed resources in electricity markets is also addressed as an enabler for their increased and efficient use.

Keywords

clustering --- demand Response --- distributed generation --- smart grids --- demand-side management --- multi-agent system --- distributed coordination --- distributed energy resources --- swarm intelligence --- virtual power plant --- distributed energy resources --- multi-agent technology --- bidding strategy --- stackelberg dynamic game --- aggregator --- distribution system operator --- distributed energy resources --- local flexibility market --- flexibility service --- distributed energy --- comprehensive benefits --- multi-agent synergetic estimation --- synergistic optimization strategy --- control system --- fault-tolerant control --- algorithm design and analysis --- IoT (Internet of Things) --- nonlinear control --- optimization --- DSM --- microgrid --- solar --- wind --- teaching-learning --- microgrid --- energy storage system --- distributed generator --- frequency control --- active power control --- autonomous control --- droop control --- frequency bus-signaling --- batteries --- energy storage --- microgrids --- optimal scheduling --- particle swarm optimization --- power system management --- smart grid --- supply and demand --- trade agreements --- low voltage networks --- multi-period optimal power flow --- multi-temporal optimal power flow --- active distribution networks --- unbalanced networks --- indoor environment quality --- occupant comfort --- building climate control --- healthy building --- energy efficiency --- adaptability --- decentralized energy management system --- local energy trading --- multi-agent system --- optimization --- smart grid --- demand response --- distributed generation --- particle swarm optimization --- prosumer --- n/a

Smart Energy Management for Smart Grids

Authors: ---
ISBN: 9783039281428 9783039281435 Year: Pages: 350 DOI: 10.3390/books978-3-03928-143-5 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

This book is a contribution from the authors, to share solutions for a better and sustainable power grid. Renewable energy, smart grid security and smart energy management are the main topics discussed in this book.

Keywords

seawater pumped storage --- renewable energy --- active distribution networks --- two-stage --- scheduling --- distributed generation --- storage device --- MILP --- ToU tariff --- optimization --- daily consumption curve --- peak/off-peak --- programmable appliances --- smart grid --- smart energy --- sustainability --- values --- technology acceptance --- technology adoption --- smart grid --- Smart Grid Station --- renewable energy sources --- energy management system --- smart metering --- feedback --- households --- energy and water consumption --- theories of social practice --- smart grid --- differentiation --- development demand --- comprehensive evaluation --- energy management system --- energy storage system --- semantic web technologies --- rules --- ontology --- engineering support --- smart grid architecture model --- model driven architecture --- IEC 61850 --- IEC 61499 --- energy storage system --- electricity charge discount program --- peak reduction --- economic feasibility analysis --- policy effectiveness evaluation --- occupant behavior --- single-person household --- energy consumption --- Korean Time Use Survey --- EnergyPlus --- data mining --- K-modes clustering --- support vector machine --- Gaussian process regression --- combined dispatch (CD) strategy --- optimization --- HOMER --- net present cost (NPC) --- sensitivity analysis --- renewable energy --- solar power generation prediction --- smart grid --- photovoltaic power --- machine learning --- electrical distribution system --- graph theory --- micro grids --- heuristic --- optimization --- planning --- unbalanced three-phase distribution networks --- optimal power flows --- genetic algorithm --- holomorphic embedding load flow method --- simulation --- forecasting --- solar generation --- storage capacity --- game theory --- nash equilibrium --- distributed energy management algorithm --- micro grid --- meta heuristic techniques --- R&amp --- D planning --- patent analysis --- sustainable smart grid technology --- R&amp --- D strategy --- STEEP analysis --- scenario planning --- electric vehicle charging technology --- multilayer perceptron neural network --- support vector machine --- cyberattacks --- optimal power flow --- smart grid security --- intruder detection system

Microgrids

Author:
ISBN: 9783039218684 9783039218691 Year: Pages: 108 DOI: 10.3390/books978-3-03921-869-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering --- Technology (General)
Added to DOAB on : 2020-01-30 16:39:46
License:

Loading...
Export citation

Choose an application

Abstract

Electrical power systems are evolving at the generation, transmission, and distribution levels. At distribution level, small generating and storage units—the so-called distributed energy sources (DERs)—are being installed close to consumption sites. The expansion of DERs is empowering renewable energy source integration and, as a consequence, new actors are appearing in electrical systems. Among them, the prosumer is a game-changer; the fruit of the behavior transformation of the consumer who has not only the ability to consume power but also to produce it. Microgrids can be understood as DER installations that have the capability of both grid-connected and grid-isolated operation. During the last decades, there has been a significant deployment of microgrids (e.g., in countries like the United States, Switzerland, and Denmark) and a consequent increase in renewable energy generation. This is contributing to the decarbonization of electrical power systems. However, the variability and intermittency of renewable sources introduce uncertainty, which implies a more complex operation and control. Taking into account that existing and future planned microgrids are being/going to be interconnected to the current electrical network, challenges in terms of design, operation, and control at power system level need to be addressed, considering existing regulations.

Keywords

demand-side management --- optimization --- deterministic optimization --- stochastic optimization --- residential users --- devices scheduling --- renewable sources --- storage systems --- electric energy market --- power quality --- chaos synchronization detection --- extension theory --- direct search method (DSM) --- microgrid (MG) --- distributed energy resources (DERs) --- distributed generation (DG) --- optimal dispatch --- microgrids --- multi-agent --- coordinated control --- IEC 61850 Standard --- generic object oriented substation event (GOOSE) communication --- power quality disturbances --- S-transform --- multiresolution --- particle swarm optimization --- decision tree --- reliability evaluation --- microgrid --- distributed generation --- battery storage --- vehicle-to-grid --- ruleless EV --- regular EV --- combined power generation system --- microgrid --- coordinative optimization of energy --- predictive control --- genetic algorithm --- distributed generation (DG) --- microgrid --- microgrid stability controller (MSC) --- total sliding-mode control --- hierarchical control scheme --- maximum electrical efficiency --- nonlinear programming --- solid oxide fuel cell --- electric vehicle (EV) --- vehicle-to-grid (V2G) --- isolated grid --- load frequency control (LFC) --- multivariable generalized predictive control (MGPC) --- current harmonic reduction --- active filter --- power quality --- buck-boost converter --- renewable energy source --- optimal capacity --- reliability --- renewable --- energy storage --- genetic algorithm --- DC microgrid --- communication delay --- droop control --- load power sharing --- mesh configuration --- radial configuration --- electric vehicle --- energy management system --- peak-shift --- peak-cut --- vehicle information system --- photovoltaic feasibility --- flexible generation --- distributed energy resources --- power quality --- DC distribution --- DC microgrid --- inrush current --- grounding --- DC architectures --- datacenter --- residential power systems --- telecommunication power management --- smart grids --- microgrid --- network planning --- power distribution --- grid independence --- distributed energy resources --- micro-grid --- IEC 61850 --- plug and play --- operation --- small-scale standalone microgrid --- HESS --- ESS effective rate --- coordinated control strategy --- cost and life --- technical and economic optimization --- microgrid --- flywheel energy storage (FES) --- doubly fed induction machine --- frequency control --- smoothing wind power --- distributed generation --- congestion problems --- medium-voltage networks --- curtailment --- flexibility --- microgrid test facility --- distributed generation --- integrated electrical and thermal grids --- flexible and configurable architecture --- energy efficiency --- distributed optimization --- optimal power flow --- microgrids --- embedded system --- smart grid --- smart inverter --- distributed energy resource --- power quality

Intelligent Control in Energy Systems

Author:
ISBN: 9783039214150 9783039214167 Year: Pages: 508 DOI: 10.3390/books978-3-03921-416-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Physics (General)
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

The editors of this Special Issue titled “Intelligent Control in Energy Systems” have attempted to create a book containing original technical articles addressing various elements of intelligent control in energy systems. In response to our call for papers, we received 60 submissions. Of those submissions, 27 were published and 33 were rejected. In this book, we offer the 27 accepted technical articles as well as one editorial. Authors from 15 countries (China, Netherlands, Spain, Tunisia, United Sates of America, Korea, Brazil, Egypt, Denmark, Indonesia, Oman, Canada, Algeria, Mexico, and the Czech Republic) elaborate on several aspects of intelligent control in energy systems. The book covers a broad range of topics including fuzzy PID in automotive fuel cell and MPPT tracking, neural networks for fuel cell control and dynamic optimization of energy management, adaptive control on power systems, hierarchical Petri Nets in microgrid management, model predictive control for electric vehicle battery and frequency regulation in HVAC systems, deep learning for power consumption forecasting, decision trees for wind systems, risk analysis for demand side management, finite state automata for HVAC control, robust ?-synthesis for microgrids, and neuro-fuzzy systems in energy storage.

Keywords

lithium-ion battery pack --- soft internal short circuit --- model-based fault detection --- battery safety --- internal short circuit resistance --- load frequency control --- model uncertainty --- ?-synthesis --- differential evolution --- decision tree --- preventive control --- Fault Ride Through Capability --- doubly-fed induction generator --- ancillary service --- frequency regulation --- demand response --- commercial/residential buildings --- HVAC systems --- model predictive control --- rule-based control --- position control --- static friction --- exhaust gas recirculation (EGR) valve system --- automotive application --- hybrid electric vehicle --- compound structured permanent-magnet motor --- energy management strategy --- instantaneous optimization minimum power loss --- back propagation (BP) neural network --- power transformer winding --- vibration characteristics --- multiphysical field analysis --- short-circuit experiment --- winding-fault characteristics --- occupancy model --- occupancy-based control --- model predictive control --- energy efficiency --- building climate control --- solar monitoring system --- photovoltaic array --- energy management --- demand side management --- operation limit violations --- probabilistic power flow --- network sensitivity --- neural networks --- railway --- high-speed railway --- neutral section --- medium voltage --- thyristor --- AC static switch --- adaptive backstepping --- nonlinear power systems --- sliding mode control --- error compensation --- ?-class function --- energy internet --- multi-energy complementary --- integrated energy systems --- distribution network planning --- electric power consumption --- multi-step forecasting --- long short term memory --- convolutional neural network --- system identification --- parameter estimation --- system modelling --- model reduction --- polynomial expansion --- orthogonal least square --- industrial process --- electric vehicle --- battery packs --- active balance --- model predictive control --- hierarchical Petri nets --- urban microgrids --- phase-load balancing --- fuzzy logic controller --- MPPT: maximum power point tracking --- photovoltaic system --- step-up boost converter --- proton exchange membrane fuel cell --- four phases interleaved boost converter --- neural network controller --- AC-DC converters --- bridgeless SEPIC PFC converter --- repetitive controller --- current distortion --- current controller design --- stochastic power system operating point drift --- wind integrated power system --- power oscillations --- adaptive damping control --- continuous voltage control --- multiple-point control --- interaction minimization --- pilot point --- adjacent areas --- ANFIS --- artificial neural network --- fuzzy --- small scale compressed air energy storage (SS-CAES) --- voltage controlling --- electric meter --- error estimation --- line loss --- RLS --- double forgetting factors --- hybrid power plant --- control architecture --- coordination of reserves --- frequency support --- frequency control dead band --- fast frequency response --- frequency containment reserve --- line switching --- voltage violations --- three-stage --- fractional order fuzzy PID controller --- neural network algorithm --- PEM fuel cell --- MPPT operation --- sensitivity analysis --- intelligent control --- artificial intelligence --- energy management system --- smart micro-grid --- energy systems --- intelligent buildings --- forecasting --- multi-agent control --- optimization

Multilevel Converters: Analysis, Modulation, Topologies, and Applications

Authors: ---
ISBN: 9783039214815 9783039214822 Year: Pages: 548 DOI: 10.3390/books978-3-03921-482-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Electrical and Nuclear Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

This book is a collection of scientific papers concerning multilevel inverters examined from different points of view. Many applications are considered, such as renewable energy interface, power conditioning systems, electric drives, and chargers for electric vehicles. Different topologies have been examined in both new configurations and well-established structures, introducing novel and particular modulation strategies, and examining the effect of modulation techniques on voltage and current harmonics and the total harmonic distortion.

Keywords

DC–DC conversion --- interleaved buck --- parasitic switching states --- three-level converter --- simplified PWM strategy --- redundant switching combination --- voltage balance control --- modular multilevel converter --- IGBT short-circuit --- fault detection --- fault location --- Differential Comparison Low-Voltage Detection Method (DCLVDM) --- Continuous Wavelet Transform --- digital controller --- digital signal processors (DSP) --- modular multilevel converters (MMC) --- multi-terminal DC network (MTDC) --- MMC-MTDC --- hybrid modulated model predictive control --- optimal output voltage level --- multi-point DC control --- neutral-point-clamped (NPC) inverter --- dc-link capacitor voltage balance --- offset voltage injection --- harmonic component --- modular multilevel converters --- capacitor voltage balancing --- sorting networks --- field-programmable gate array --- low-harmonic DC ice-melting device --- transmission line --- voltage fluctuation --- harmonic --- dynamic reactive --- substation’s voltage stability --- alternating current (AC) motor drive --- current estimation --- current reconstruction method --- current unmeasurable areas --- total harmonic distortion (THD) --- single shunt resistor --- space vector pulse width modulation (SVPWM) --- shift method --- minimum voltage injection (MVI) method --- three-level neutral point clamped inverter (NPCI) --- three-level boost --- automatic current balance --- three-loop --- voltage imbalance --- DC-link voltage balancing --- field-oriented control --- field-programmable gate array --- multilevel active-clamped converter --- motor drive --- buck-chopper --- PV-simulator --- T-type converter --- real time simulator --- three-level boost DC-DC converter --- small signal modeling --- voltage balance control --- multilevel converter --- selected harmonic elimination --- genetic algorithm --- imperialist competitive algorithm --- voltage ripple --- voltage source inverter --- three-phase inverter --- DC-link capacitor design --- Cascaded H-bridge multilevel inverter (CHBMI) --- field-programmable gate array --- total harmonic distortion (THD) --- modulation techniques --- multilevel converter --- electric vehicle --- on-board battery charger --- power factor correction --- power quality --- smart grid --- model predictive control --- single-phase three-level NPC converter --- commutation --- modular multilevel converter (MMC) --- Sub-module (SM) fault --- fault-tolerant control --- Phase Disposition PWM --- finite control set model predictive control --- T-type inverter --- computational cost --- LC filter --- DC-link capacitor voltage balancing --- multilevel converter --- DC side fault blocking --- predictive control --- battery energy storage system (BESS) --- modular multilevel converter (MMC) --- state-of-charge (SOC) balancing control --- tolerance for battery power unbalance --- model predictive control (MPC) --- computational burden --- reverse prediction --- modular multilevel converter (MMC) --- multilevel inverters --- total harmonic distortion --- level-shifted PWM --- phase-shifted PWM --- electrical drives --- energy saving --- multilevel power converters --- permanent magnet synchronous generator --- open-end winding configuration --- voltage balancing --- power factor --- improved PQ algorithm --- power flow analysis --- three-phase to single-phase cascaded converter --- ACTPSS --- NPC/H Bridge --- five-level --- Balance of capacitor voltage --- Suppression of CMV --- SVPWM --- multilevel converter --- multi-motor drive --- harmonic mitigation --- active filter --- open end winding motor --- high efficiency drive --- high reliability applications

Listing 1 - 8 of 8
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (8)


License

CC by-nc-nd (8)


Language

english (8)


Year
From To Submit

2020 (4)

2019 (4)