Search results: Found 8

Listing 1 - 8 of 8
Sort by
Doubled haploidy in model and recalcitrant species

Author:
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889197835 Year: Pages: 119 DOI: 10.3389/978-2-88919-783-5 Language: English
Publisher: Frontiers Media SA
Subject: Botany --- Science (General)
Added to DOAB on : 2016-04-07 11:22:02
License:

Loading...
Export citation

Choose an application

Abstract

Doubled haploids (DHs) are powerful tools to reduce the time and costs needed to produce pure lines to be used in breeding programs. DHs are also useful for genetic mapping of complex qualitative traits, to avoid transgenic hemizygotes, for studies of linkage and estimation of recombination fractions, for screening of recessive mutants. These are just some of the advantages that make DH technology one of the most exciting fields of present and future plant biotechnology. All of the DH methods have model species where these technologies have been developed, or that respond every efficiently to their corresponding induction treatment. However, not all the species of economical/agronomical interest respond to these methodologies as they should be in order to obtain DHs on a routine basis. Indeed, many of them are still considered as low-responding or recalcitrant to these treatments, including many of the most important crops worldwide. Although many groups are making significant progresses in the understanding of these intriguing experimental pathways, little is known about the origin, causes and ways to overcome recalcitrancy. It would be very important to shed light on the particularities of recalcitrant species and the special conditions they need to be induced. In parallel, the knowledge gained from the study of basic aspects in model species could also be beneficial to overcome recalcitrancy. In this e-book, we present a compilation of different approaches leading to the generation of DHs in model and in recalcitrant species, and different studies on new and relevant aspects of this process, useful to extract common traits and features, to know better these processes, and eventually, to elucidate how to make DH technology more efficient.

Annually Laminated Lake Sediments

Authors: ---
ISBN: 9783039287864 / 9783039287871 Year: Pages: 130 DOI: 10.3390/books978-3-03928-787-1 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Environmental Sciences
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

The collection of papers presented in this book illustrates the recent progress made in varved sediment research and highlights the large variety of methodological approaches and research directions applied. The contributions cover monitoring of modern sediment fluxes using sediment traps; geochronological and sedimentological analyses of annually laminated lacustrine sediments or varves; and multiproxy investigations, including geochemical and biological proxies as well as spatiotemporal analyses based on multicore studies supported by satellite images and X-ray computed tomography (CT). The scientific issues discuss the influences of hydrological and climatological phenomena on short-term changes in sediment flux, the relationships between biogeochemical (limnological) processes in the water column and the formation of varves, the preservation of environmental signals in varved sediments, and possibilities of synchronizing varved records with other high-resolution environmental archives such as tree rings.

Molecular and Cellular Plant Reproduction

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889452118 Year: Pages: 302 DOI: 10.3389/978-2-88945-211-8 Language: English
Publisher: Frontiers Media SA
Subject: Botany --- Science (General)
Added to DOAB on : 2017-10-13 14:57:01
License:

Loading...
Export citation

Choose an application

Abstract

Plant reproduction is essential not only for producing offspring but also for increasing crop quality and yield. Moreover, plant reproduction entails complex growth and developmental processes, which provide a variety of opportunities for elucidating fundamental principles in biology. The combinational employment of molecular genetic approaches and emerging technologies, such as florescence-based imaging techniques and next generation sequencing, has led to important progresses in plant reproduction using model plants, crops, and trees. This e-book compiles 31 articles, including 1 hypothesis and theory, 4 perspectives, 12 reviews, and 14 original research papers. We hope that this E-book will draw attention of all plant biologists to exciting advances in the field of plant reproduction and help solve remaining challenging questions in the future. We wish to express our appreciation to all the authors, reviewers, and the Frontiers editorial office for their excellent contributions that made the publication of this e-book possible.

Chemical/Instrumental Approaches to the Evaluation of Wine Chemistry

Authors: ---
ISBN: 9783039287345 / 9783039287352 Year: Pages: 148 DOI: 10.3390/books978-3-03928-735-2 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Chemistry (General) --- Analytical Chemistry
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Wine is a widely consumed beverage due to its unique and pleasant sensory properties. Wine is composed of more than one thousand chemical compounds (e.g., alcohols, esters, acids, terpenoids, phenolic compounds, flavonoids, anthocyanins, minerals, and vitamins, among others) resulting from several chemical and biochemical processes. Microextraction techniques in tandem with high-resolution analytical instruments have been applied by wine researchers to expand the knowledge of wine’s chemical composition with the purposes of improving wine quality, supporting winemaker decisions related to the winemaking process, and guaranteeing the authenticity of wine. As a result, we proposed “Chemical/Instrumental Approaches to the Evaluation of Wine Chemistry” as a topic for a Special Issue in Molecules. This Special Issue aims to provide an update on state-of-the-art extraction procedures (e.g., solid-phase microextraction (SPME)) and analytical tools (e.g., nuclear magnetic resonance (NMR), inductively coupled plasma mass spectrometry (ICP-MS), ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS)), emphasizing their use as suitable platforms for the establishment of the chemical composition of wine (volatomic profile, antioxidants, phenolic pattern, and elemental composition, among others). Information related to wine sensorial properties, contaminants, authenticity, and chemometric tools used for data treatment are described in this Issue.

Plant Genetics and Molecular Breeding

Author:
ISBN: 9783039211753 9783039211760 Year: Pages: 628 DOI: 10.3390/books978-3-03921-176-0 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

The development of new plant varieties is a long and tedious process involving the generation of large seedling populations for the selection of the best individuals. While the ability of breeders to generate large populations is almost unlimited, the selection of these seedlings is the main factor limiting the generation of new cultivars. Molecular studies for the development of marker-assisted selection (MAS) strategies are particularly useful when the evaluation of the character is expensive, time-consuming, or with long juvenile periods. The papers published in the Special Issue “Plant Genetics and Molecular Breeding” report highly novel results and testable new models for the integrative analysis of genetic (phenotyping and transmission of agronomic characters), physiology (flowering, ripening, organ development), genomic (DNA regions responsible for the different agronomic characters), transcriptomic (gene expression analysis of the characters), proteomic (proteins and enzymes involved in the expression of the characters), metabolomic (secondary metabolites), and epigenetic (DNA methylation and histone modifications) approaches for the development of new MAS strategies. These molecular approaches together with an increasingly accurate phenotyping will facilitate the breeding of new climate-resilient varieties resistant to abiotic and biotic stress, with suitable productivity and quality, to extend the adaptation and viability of the current varieties.

Keywords

sugarcane --- cry2A gene --- particle bombardment --- stem borer --- resistance --- NPK fertilizers --- agronomic traits --- molecular markers --- quantitative trait loci --- common wild rice --- Promoter --- Green tissue-specific expression --- light-induced --- transgenic chrysanthemum --- WRKY transcription factor --- salt stress --- gene expression --- DgWRKY2 --- Cucumis sativus L. --- RNA-Seq --- DEGs --- sucrose --- ABA --- drought stress --- Aechmea fasciata --- squamosa promoter binding protein-like --- flowering time --- plant architecture --- bromeliad --- Oryza sativa --- endosperm development --- rice quality --- WB1 --- the modified MutMap method --- abiotic stress --- Cicer arietinum --- candidate genes --- genetics --- heat-stress --- molecular breeding --- metallothionein --- Brassica --- Brassica napus --- As3+ stress --- broccoli --- cytoplasmic male sterile --- bud abortion --- gene expression --- transcriptome --- RNA-Seq --- sesame --- genome-wide association study --- yield --- QTL --- candidate gene --- cabbage --- yellow-green-leaf mutant --- recombination-suppressed region --- bulk segregant RNA-seq --- differentially expressed genes --- marker–trait association --- haplotype block --- genes --- root traits --- D-genome --- genotyping-by-sequencing --- single nucleotide polymorphism --- durum wheat --- bread wheat --- complex traits --- Brassica oleracea --- Ogura-CMS --- iTRAQ --- transcriptome --- pollen development --- rice --- OsCDPK1 --- seed development, starch biosynthesis --- endosperm appearance --- Chimonanthus praecox --- nectary --- floral scent --- gene expression --- Prunus --- flowering --- bisulfite sequencing --- genomics --- epigenetics --- breeding --- AP2/ERF genes --- Bryum argenteum --- transcriptome --- gene expression --- stress tolerance --- SmJMT --- transgenic --- Salvia miltiorrhiza --- overexpression --- transcriptome --- phenolic acids --- Idesia polycarpa var --- glycine --- FAD2 --- linoleic acid --- oleic acid --- anther wall --- tapetum --- pollen accumulation --- OsGPAT3 --- rice --- cytoplasmic male sterility (CMS) --- phytohormones --- differentially expressed genes --- pollen development --- Brassica napus --- Rosa rugosa --- RrGT2 gene --- Clone --- VIGS --- Overexpression --- Tobacco --- Flower color --- Anthocyanin --- sugarcane --- WRKY --- subcellular localization --- gene expression pattern --- protein-protein interaction --- transient overexpression --- soybean --- branching --- genome-wide association study (GWAS) --- near-isogenic line (NIL) --- BRANCHED1 (BRC1) --- TCP transcription factor --- Zea mays L. --- MADS transcription factor --- ZmES22 --- starch --- flowering time --- gene-by-gene interaction --- Hd1 --- Ghd7 --- rice --- yield trait --- Oryza sativa L. --- leaf shape --- yield trait --- molecular breeding --- hybrid rice --- nutrient use efficiency --- quantitative trait loci (QTLs), molecular markers --- agronomic efficiency --- partial factor productivity --- P. suffruticosa --- R2R3-MYB --- overexpression --- anthocyanin --- transcriptional regulation --- ethylene-responsive factor --- Actinidia deliciosa --- AdRAP2.3 --- gene expression --- waterlogging stress --- regulation --- Chrysanthemum morifolium --- WUS --- CYC2 --- gynomonoecy --- reproductive organ --- flower symmetry --- Hs1pro-1 --- cZR3 --- gene pyramiding --- Heterodera schachtii --- resistance --- tomato --- Elongated Internode (EI) --- QTL --- GA2ox7 --- n/a

The Long-Term Perspective of Human Impact on Landscape for Environmental Change and Sustainability

Authors: ---
ISBN: 9783039217960 9783039217977 Year: Pages: 258 DOI: 10.3390/books978-3-03921-797-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Environmental Sciences
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

The research studies included in this Special Issue highlight the fundamental contribution of the knowledge of environmental history to conscious and efficient environment conservation and management. The long-term perspective of the dynamics that govern the human–climate ecosystem is becoming one of the main focuses of interest in biological and earth system sciences. Multidisciplinary bio-geo-archaeo investigations into the underlying processes of human impact on the landscape are crucial to envisage possible future scenarios of biosphere responses to global warming and biodiversity losses. This Special Issue seeks to engage an interdisciplinary dialog on the dynamic interactions between nature and society, focusing on long-term environmental data as an essential tool for better-informed landscape management decisions to achieve an equilibrium between conservation and sustainable resource exploitation.

The Role of MicroRNAs in Plants

Author:
ISBN: 9783039287307 / 9783039287314 Year: Pages: 174 DOI: 10.3390/books978-3-03928-731-4 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Nutrition and Food Sciences
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Discovered in plants at the turn of the century, microRNAs (miRNAs) have been found to be fundamental to many aspects of plant biology. These small (20–24 nt) regulatory RNAs are derived via processing from longer imperfect double-stranded RNAs. They are then incorporated into silencing complexes, which they guide to (m)RNAs of high sequence complementarity, resulting in gene silencing outcomes, either via RNA degradation and/or translational inhibition. Some miRNAs are ancient, being present in all species of land plants and controlling fundamental processes such as phase change, organ polarity, flowering, and leaf and root development. However, there are many more miRNAs that are much less conserved and with less understood functions. This Special Issue contains seven research papers that span from understanding the function of a single miRNA family to examining how the miRNA profiles alter during abiotic stress or nutrient deficiency. The possibility of circular RNAs in plants acting as miRNA decoys to inhibit miRNA function is investigated, as was the hierarchical roles of miRNA biogenesis factors in the maintenance of phosphate homeostasis. Three reviews cover the potential of miRNAs for agronomic improvement of maize, the role of miRNA-triggered secondary small RNAs in plants, and the potential function of an ancient plant miRNA.

Plant Protein and Proteome Altlas--Integrated Omics Analyses of Plants under Abiotic Stresses

Authors: --- --- --- --- et al.
ISBN: 9783039219605 / 9783039219612 Year: Pages: 558 DOI: 10.3390/books978-3-03921-961-2 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Botany
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Integrative omics of plants in response to stress conditions play more crucial roles in the post-genomic era. High-quality genomic data provide more deeper understanding of how plants to survive under environmental stresses. This book is focused on concluding the recent progress in the Protein and Proteome Atlas in plants under different stresses. It covers various aspects of plant protein ranging from agricultural proteomics, structure and function of proteins, and approaches for protein identification and quantification.

Keywords

proteomic --- postharvest freshness --- ATP synthase --- ATP synthase CF1 alpha subunit (chloroplast) --- chlorophyll fluorescence parameters --- photosynthetic parameters --- drought stress --- Triticum aestivum L. --- comparative proteomic analysis --- iTRAQ --- VIGS --- Jatropha curcas --- phosphoproteomics --- seedling --- chilling stress --- regulated mechanism --- Alternanthera philoxeroides --- proteomic --- stem --- potassium --- stress --- Salinity stress --- Dunaliella salina --- isobaric tags for relative and absolute quantitation --- differentially abundant proteins --- proteomics --- arbuscular mycorrhizal fungi --- salt stress --- E. angustifolia --- proteomics --- wheat --- root --- wood vinegar --- drought stress --- ROS --- ABA --- proteome --- maize --- AGPase --- phosphorylation --- brittle-2 --- phos-tagTM --- MIPS --- exon-intron structure diversity --- Gossypium hirsutum --- loss-of-function mutant --- root cell elongation --- CHA-SQ-1 --- cytomorphology --- pollen abortion --- proteomics --- wheat --- cotton --- somatic embryogenesis --- transdifferentiation --- quantitative proteomics --- regulation and metabolism --- molecular basis --- concerted network --- maize --- phosphoproteomics --- salt tolerance --- label-free quantification --- root and shoot --- sugar beet --- salt stress --- S-adenosylmethionine decarboxylase --- ROS --- antioxidant enzyme --- cotton --- somatic embryogenesis --- transdifferentiation --- widely targeted metabolomics --- purine metabolism --- flavonoid biosynthesis --- molecular and biochemical basis --- transcript-metabolite network --- leaf sheath --- maturation --- transcriptional dynamics --- transcriptome --- abiotic stress --- silicate limitation --- diatom --- iTRAQ --- proteomics --- photosynthesis --- carbon fixation --- natural rubber biosynthesis --- mass spectrometry --- rubber grass --- rubber latex --- shotgun proteomics --- Taraxacum kok-saghyz --- two-dimensional gel electrophoresis --- visual proteome map --- proteomics --- wheat --- drought --- leaf --- iTRAQ --- micro-exons --- constitutive splicing --- alternative splicing --- ancient genes --- domain --- radish --- heat stress --- transcriptome sequencing --- lncRNA --- miRNA --- physiological response --- Millettia pinnata --- woody oilseed plants --- seed development --- miRNA --- nitrogen fertilizer --- rice --- proteome --- cultivars --- nitrogen use efficiency (NUE) --- Nelumbo nucifera --- phylogeny --- genomics --- molecular mechanisms --- model plant --- proteomes --- iTRAQ --- filling kernel --- drought stress --- heat shock proteins --- Zea mays L. --- wucai --- low-temperature stress --- high-temperature stress --- proteomics --- redox homeostasis --- GLU1 --- glutathione --- heat response --- heat-sensitive spinach variety --- proteomics --- ROS scavenging --- inositol --- phosphatidylinositol --- phosphatase --- stress --- signaling pathway --- integrated omics --- plants under stress --- post-genomics era --- proteome atlas --- quantitative proteomics

Listing 1 - 8 of 8
Sort by
Narrow your search