Search results: Found 5

Listing 1 - 5 of 5
Sort by
Cooperative Adaptations and Evolution in Plant-Microbe Systems

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889455997 Year: Pages: 209 DOI: 10.3389/978-2-88945-599-7 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Botany
Added to DOAB on : 2019-01-23 14:53:43
License:

Loading...
Export citation

Choose an application

Abstract

Ecological and evolutionary genetics of plant-microbe interactions is of high importance for developing the plant science since the plants originated symbiotically (via incorporation of a phototrophic cyanobacterium into a heterotrophic eukaryon) and further evolve as the multipartite symbiotic systems, harboring the enormously diverse microbial communities. The Research Topic has integrated the top-level research on the genetic interactions in the plant-microbial associations required to develop the novel evolutionary approaches in the molecular and ecological genetics of different kinds of symbioses.

The plant microbiome and its importance for plant and human health

Authors: --- --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889193783 Year: Pages: 189 DOI: 10.3389/978-2-88919-378-3 Language: English
Publisher: Frontiers Media SA
Subject: Botany --- Microbiology --- Science (General)
Added to DOAB on : 2015-11-19 16:29:12
License:

Loading...
Export citation

Choose an application

Abstract

The study of plant-microbe associations by new techniques has significantly improved our understanding of the structure and specificity of the plant microbiome. Yet, microbiome function and the importance of the plant’s microbiome in the context of human and plant health are largely unexplored. Comparable with our human microbiome, millions of microbes inhabit plants, forming complex ecological communities that influence plant growth and health through its collective metabolic activities and host interactions. Viewing the microbiota from an ecological perspective can provide insight into how to promote plant health and stress tolerance of their hosts or how to adapt to a changing climate by targeting this microbial community. Moreover, the plant microbiome has a substantial impact on human health by influencing our gut microbiome by eating raw plants such as lettuce and herbs but also by influencing the microbiome of our environment through airflow. This research topic comprising reviews, original and opinion articles highlights the current knowledge regarding plant microbiomes, their specificity, diversity and function as well as all aspects studying the management of plant microbiomes to enhance plant growth, health quality and stress tolerance.

Harnessing Useful Rhizosphere Microorganisms for Pathogen and Pest Biocontrol

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889450596 Year: Pages: 334 DOI: 10.3389/978-2-88945-059-6 Language: English
Publisher: Frontiers Media SA
Subject: Botany --- Microbiology --- Science (General)
Added to DOAB on : 2017-07-06 13:27:36
License:

Loading...
Export citation

Choose an application

Abstract

Growing demographic trends require sustainable technologies to improve quality and yield of future food productions. However, there is uncertainty about plant protection strategies in many agro-ecosystems. Pests, diseases, and weeds are overwhelmingly controlled by chemicals which pose health risks and cause other undesirable effects.Therefore, an increasing concern on control measures emerged in recent years. Many chemicals became questioned with regard to their sustainability and are (or will be) banned. Alternative management tools are studied, relying on biological, and low impact solutions. This ResearchTopic concerns microbial biocontrol agents, root-associated microbiomes, and rhizosphere networks. Understanding how they interact or respond to (a)biotic environmental cues is instrumental for an effective and sustainable impact. The rhizosphere is in this regard a fundamental object of study, because of its role in plant productivity. This e-book provides a polyhedral perspective on many issues in which beneficial microorganisms are involved. Data indeed demonstrate that they represent an as yet poorly-explored resource, whose exploitation may actively sustain plant protection and crop production. Given the huge number of microbial species present on the planet, the microorganisms studied represent just the tip of an iceberg. Data produced are, however, informative enough about their genetic and functional biodiversity, as well as about the ecosystem services they provide to underp in crop production. Challenges for future research work concern not only the biology of these species, but also the practices required to protect their biodiversity and to extend their application in the wide range of agricultural soils and systems present in the world. Agriculture cannot remain successfully and sustainable unless plant germplasm and useful microbial species are integrated, a goal for which new knowledge and information-based approaches are urgently needed.Growing demographic trends require sustainable technologies to improve quality and yield of future food productions. However, there is uncertainty about plant protection strategies in many agro-ecosystems. Pests, diseases, and weeds are overwhelmingly controlled by chemicals which pose health risks and cause other undesirable effects.Therefore, an increasing concern on control measures emerged in recent years. Many chemicals became questioned with regard to their sustainability and are (or will be) banned. Alternative management tools are studied, relying on biological, and low impact solutions. This ResearchTopic concerns microbial biocontrol agents, root-associated microbiomes, and rhizosphere networks. Understanding how they interact or respond to (a)biotic environmental cues is instrumental for an effective and sustainable impact. The rhizosphere is in this regard a fundamental object of study, because of its role in plant productivity. This e-book provides a polyhedral perspective on many issues in which beneficial microorganisms are involved. Data indeed demonstrate that they represent an as yet poorly-explored resource, whose exploitation may actively sustain plant protection and crop production. Given the huge number of microbial species present on the planet, the microorganisms studied represent just the tip of an iceberg. Data produced are, however, informative enough about their genetic and functional biodiversity, as well as about the ecosystem services they provide to underp in crop production. Challenges for future research work concern not only the biology of these species, but also the practices required to protect their biodiversity and to extend their application in the wide range of agricultural soils and systems present in the world. Agriculture cannot remain successfully and sustainable unless plant germplasm and useful microbial species are integrated, a goal for which new knowledge and information-based approaches are urgently needed.

Emerging Tools for Emerging Symbioses - Using Genomics Applications to Studying Endophytes

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889452194 Year: Pages: 157 DOI: 10.3389/978-2-88945-219-4 Language: English
Publisher: Frontiers Media SA
Subject: Microbiology --- Science (General)
Added to DOAB on : 2017-10-13 14:57:01
License:

Loading...
Export citation

Choose an application

Abstract

Plants are typically colonized by numerous endophyte species symbiotically without any noticeable disease symptoms. These microbes are abundant, diverse and play critical ecological roles across natural and agricultural ecosystems. Endophytes have attracted the attention of researchers due to their various beneficial effects on plants, especially in agricultural crop species. Genomic tools will enhance our understanding on the growth and nutrition requirements of this host-symbiont relationship. Recent advances in DNA sequencing technologies and bioinformatic pipelines have allowed analyzing the plant microbiome and host-endophyte interaction more effectively with limited bias. Furthermore, various studies have employed and utilized transcriptomic and genomic tools to understand the role of endophytes and their interaction with plant hosts. This electronic book covers various research articles highlighting the important developments on endophytes using transcriptomics, next generation sequencing and genomic tools.

Elucidating the function of mycorrhizal-induced Kunitz protease inhibitors and characterization of their putative target proteases in Medicago truncatula

Author:
ISBN: 9783731501756 Year: Pages: XVI, 169 p. DOI: 10.5445/KSP/1000038422 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Biology
Added to DOAB on : 2019-07-30 20:02:02
License:

Loading...
Export citation

Choose an application

Abstract

Most terrestrial plants live in symbiosis with arbuscular mycorrhizal fungi. In this study, a mycorrhizal-induced gene family of Medicago truncatula encoding putative Kunitz protease inhibitors was functionally characterized by means of biomolecular, biochemical, microscopical and in silico methods. Their putative target proteases were identified among a clan of serine carboxypeptidases. Results suggest that both protein families work functionally together to control mycorrhizal establishment.

Listing 1 - 5 of 5
Sort by
Narrow your search

Publisher

Frontiers Media SA (4)

KIT Scientific Publishing (1)


License

CC by (4)

CC by-sa (1)


Language

english (5)


Year
From To Submit

2018 (1)

2017 (2)

2015 (1)

2014 (1)

-->