Search results: Found 2

Listing 1 - 2 of 2
Sort by
Intrinsically Biocompatible Polymer Systems

Author:
ISBN: 9783039284207 9783039284214 Year: Pages: 270 DOI: 10.3390/books978-3-03928-421-4 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Materials
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

Biocompatibility refers to the ability of a biomaterial to perform its desired function with respect to a medical therapy, without eliciting any undesirable local or systemic effects in the recipient or beneficiary of that therapy, but generating the most appropriate beneficial cellular or tissue response in that specific situation, and optimizing the clinically relevant performance of that therapy, which reflects current developments in the area of intrinsically biocompatible polymer systems. Polymeric biomaterials are presently used as, for example, long-term implantable medical devices, degradable implantable systems, transient invasive intravascular devices, and, recently, as tissue engineering scaffolds. This Special Issue welcomes full papers and short communications highlighting the aspects of the current trends in the area of intrinsically biocompatible polymer systems.

Keywords

antimicrobial peptides --- biodegradable polymers --- biocompatible polymers --- drug delivery systems --- controlled release --- citropin --- temporin --- ionic liquids --- chitooligosaccharide --- polyurethane --- biodegradability --- physicochemical properties --- hemocompatibility --- biological activity --- crosslinking --- drug delivery --- cosmetic --- food-supplement --- functionalization --- hyaluronan applications --- hyaluronan derivatives --- hyaluronan synthases --- hyaluronic acid --- hyaluronidases --- physico-chemical properties --- cyclohexanone --- ?-butyrolactone --- chloroform --- extraction --- polyhydroxyalkanoates --- PHB --- electrospraying --- biodegradable nano/microparticles --- drug delivery --- septic arthritis --- release characteristics --- biopolymers --- silk fibroin --- konjac glucomannan --- porous beads --- scaffolds --- tissue engineering --- microcarriers --- Poly (l-lactic) acid --- Chitosan --- nanohydroxyapatite --- osteoblasts --- ion-releasing materials --- shrinkage stress --- water sorption --- hydroscopic expansion --- photoelastic investigation --- enzymatic polymerization --- chemical polymerization --- poly(benzyl malate) --- biocompatible nanoparticles --- cell uptake --- cytotoxicity --- HepaRG cells --- human macrophages --- star polymers --- solution behavior --- ATRP --- SPION --- contrast agent --- MRI --- cancer diagnosis --- folate receptor --- pluronic F127 --- polylactide --- hydrolytic degradation --- mechanical properties --- PEEK copolymer synthesis --- PEEK composite --- Spine cage application --- In vitro biosafety --- degradation --- saliva --- mechanical properties --- molecular weight --- thermal properties --- activation energy of thermal decomposition --- anterior cruciate ligament reconstruction --- bone tunnel enlargement --- X-ray microtomography --- polylactide --- n/a

Biomass Processing for Biofuels, Bioenergy and Chemicals

Authors: --- ---
ISBN: 9783039289097 / 9783039289103 Year: Pages: 428 DOI: 10.3390/books978-3-03928-910-3 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Biomass can be used to produce renewable electricity, thermal energy, transportation fuels (biofuels), and high-value functional chemicals. As an energy source, biomass can be used either directly via combustion to produce heat or indirectly after it is converted to one of many forms of bioenergy and biofuel via thermochemical or biochemical pathways. The conversion of biomass can be achieved using various advanced methods, which are broadly classified into thermochemical conversion, biochemical conversion, electrochemical conversion, and so on. Advanced development technologies and processes are able to convert biomass into alternative energy sources in solid (e.g., charcoal, biochar, and RDF), liquid (biodiesel, algae biofuel, bioethanol, and pyrolysis and liquefaction bio-oils), and gaseous (e.g., biogas, syngas, and biohydrogen) forms. Because of the merits of biomass energy for environmental sustainability, biofuel and bioenergy technologies play a crucial role in renewable energy development and the replacement of chemicals by highly functional biomass. This book provides a comprehensive overview and in-depth technical research addressing recent progress in biomass conversion processes. It also covers studies on advanced techniques and methods for bioenergy and biofuel production.

Keywords

lignocellulose --- pretreatment --- hardwood --- extrusion --- enzymatic digestibility --- bioethanol --- renewable energy --- biofuel --- environment --- technology development --- co-combustion --- sewage sludge --- thermogravimetric analysis --- Fourier transform infrared spectroscopy --- synergistic effect --- single-pellet combustion --- biodiesel --- fatty acid methyl ester --- free fatty acids --- oxidation stability --- antioxidant --- hydrogen --- coffee mucilage --- organic wastes --- dark fermentation --- anaerobic digestion --- biodiesel --- bio-jet fuel --- triacylglycerides --- Fatty Acid Methyl Ester --- lipids --- hydrodeoxygenation --- drop-in fuel --- rubber seed oil --- biodiesel production --- nanomagnetic catalyst --- subcritical methanol --- FAME yield --- Box-Behnken design --- GCI --- biodiesel --- diesel --- combustion --- emission --- renewable energy --- microwave --- free fatty acid --- crude oil --- renewable energy --- biomass --- waste --- black soldier fly larvae (BSFL) --- instar --- lipid --- fatty acid methyl ester (FAME) --- fermentation --- Rancimat method --- butylated hydroxyanisole --- tert-butylhydroquinone --- fatty acid methyl esters --- viscosity --- response surface --- anaerobic treatment --- biogas --- kinetic study --- potato peels --- cow manure --- thermophilic --- mesophilic --- palm oil mill effluent --- acclimatization --- direct carbon fuel cell --- biochar --- pyrolysis --- power density --- pre-treatment --- post-treatment --- combustion characteristics --- injection strategies --- compression ratio --- intake temperature --- torrefaction --- vacuum --- biomass pretreatment --- bioenergy --- energy yield --- biochar --- rice straw --- rice husk --- power generation --- gasification --- alternative fuel --- Rhus typhina biodiesel --- non-edible oil --- base-catalyzed transesterification --- Physico-chemical properties --- concentration polarization --- draw solution --- feed solution --- forward osmosis --- pressure-retarded osmosis --- operating conditions --- membrane fouling --- osmotic membrane --- bioenergy --- biofuel --- nanotechnology --- nano-catalysts --- nano-additives --- crude glycerol --- glycerol carbonate --- dimethyl carbonate --- microwave irradiation --- reaction kinetics

Listing 1 - 2 of 2
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (2)


License

CC by-nc-nd (2)


Language

eng (1)

english (1)


Year
From To Submit

2020 (2)