Search results: Found 15

Listing 1 - 10 of 15 << page
of 2
>>
Sort by
Coatings to Improve Optoelectronic Devices

ISBN: 9783039283347 / 9783039283354 Year: Pages: 172 DOI: 10.3390/books978-3-03928-335-4 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

This selection is focused on coatings and films with applications in optoelectronics, such as photovoltaics, photocatalysis, and light-based sensors and phenomena. The studies investigate the optimal composition, crystalline structure, and morphology to deliver the different functionalities sought. Obtaining transparent p-type electrodes is challenging but extremely relevant in optoelectronics. Electric conduction mechanisms and the correlations with structure and doping are discussed. The important issue of the degradation pathways in perovskite-based solar cells and the possibilities offered by different types of coatings to encapsulate the devices as well as the beneficial effect of silica coating as an antireflection and antisoiling layer on well-established solar cells are discussed. New designs of nanoplasmonic films for chemical and biological molecule sensing are reviewed, such as the combination of metallic nanoparticles and nanostructured semiconductors and dispersing metallic or bi-metallic nanoparticles in CuO films. The impacts of structure, defects, and morphology on the photoactivated properties of WO3 films and on the shape memory behavior in Cu–Al–Ni thin films are discussed. Aggregated TiO2 nanoparticles on TiO2 layers are shown to enhance optical transmittance and confer a superhydrophilic characteristic. Finally, aspects of the fundamental characterization of thin films, Drude damping in thin films, and laser-induced deflection technique are discussed.

Metal Halide Perovskite Crystals: Growth Techniques, Properties and Emerging Applications

Author:
ISBN: 9783038975588 9783038975595 Year: Pages: 216 DOI: 10.3390/books978-3-03897-559-5 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Chemistry (General) --- General and Civil Engineering --- Materials
Added to DOAB on : 2019-01-31 10:47:32
License:

Loading...
Export citation

Choose an application

Abstract

In recent years, metal halide perovskites have emerged as a rising star among semiconductor materials owing to their low cost, solution processability, and fascinating combination of material properties enabling a broad range of energy applications. Accompanied by the unprecedented success in the photovoltaic community, which has witnessed a certified power conversion efficiency of 23.7%, rapid advancement has also been achieved in the areas of light-emitting diodes, lasers, photodetectors, and solar-to-fuel energy conversion devices. Beyond the dominant format of polycrystalline perovskite thin films for solar cell applications, recent progress in metal halide perovskite crystals, ranging from nanocrystals to macroscopic single-crystals, has spurred a great deal of both scientific and industrial interest. Great research efforts have endeavored to develop new techniques for crystal growth and investigate the physical and chemical properties of the materials and explore their emerging applications. These exciting achievements call for a rationalization of the different forms of perovskite semiconductors beyond the widely used polycrystalline thin films. In the current Special Issue, “Metal Halide Perovskite Crystals: Growth Techniques, Properties and Emerging Applications”, we aim to provide a forum for the discussion and presentation of recent advances in the fields of research related to metal halide perovskite crystals.

Technical and economic potential for photovoltaic systems on buildings

Author:
Book Series: Produktion und Energie / Karlsruher Institut für Technologie, Institut für Industriebetriebslehre und industrielle Produktion u. Deutsch-Französisches Institut für Umweltforschung ISSN: 21942404 ISBN: 9783731507871 Year: Volume: 25 Pages: XXXIV, 283 p. DOI: 10.5445/KSP/1000081498 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Business and Management
Added to DOAB on : 2019-07-28 18:37:01
License:

Loading...
Export citation

Choose an application

Abstract

Finite fossil resources require the exploitation of alternative energy sources like photovoltaics. A methodology for the economic potential assessment of photovoltaic installations on buildings including building facades has been developed. It is based on detailed irradiation simulations and a combination of geographically referenced and statistical data and has been applied to the German building stock for 2015. A prognosis for the potential development until 2050 is given.

Batteriespeicher in Haushalten unter Berücksichtigung von Photovoltaik, Elektrofahrzeugen und Nachfragesteuerung

Author:
Book Series: Produktion und Energie / Karlsruher Institut für Technologie, Institut für Industriebetriebslehre und industrielle Produktion u. Deutsch-Französisches Institut für Umweltforschung ISSN: 21942404 ISBN: 9783731506881 Year: Volume: 23 Pages: XXVIII, 324 p. DOI: 10.5445/KSP/1000071259 Language: GERMAN
Publisher: KIT Scientific Publishing
Subject: Business and Management
Added to DOAB on : 2019-07-30 20:02:00
License:

Loading...
Export citation

Choose an application

Abstract

In this work a newly developed techno-economic optimization model of a household system with electric vehicle (EV) is used to endogenously dimension both the PV system and the stationary battery storage system (SBS). It maximizes the net present values (NPV) of these two systems. The NPV are highly affected by the load shifting potentials of EV and SBS, electricity tariff design and further general conditions.

Organische Nanopartikel zum Aufbau photoaktiver Schichten Organischer Solarzellen

Author:
ISBN: 9783731506270 Year: Pages: v, 237 p. DOI: 10.5445/KSP/1000065053 Language: GERMAN
Publisher: KIT Scientific Publishing
Subject: Chemistry (General)
Added to DOAB on : 2019-07-30 20:02:00
License:

Loading...
Export citation

Choose an application

Abstract

Nanoparticle dispersions were used to fabricate photoactive layers of organic solar cells from water or ethanol. By using a precipitation method the power conversion efficiencies of the nanoparticulate solar cells were similar to the ones obtained from the respective solution processed counter parts using a chlorinated solvent. Next to the thoroughly investigated material system P3HT:ICBA also the transfer to other material systems was examined.

Computational Intelligence in Photovoltaic Systems

Authors: ---
ISBN: 9783039210985 9783039210992 Year: Pages: 180 DOI: 10.3390/books978-3-03921-099-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 16:10:12
License:

Loading...
Export citation

Choose an application

Abstract

Photovoltaics, among the different renewable energy sources (RES), has become more popular. In recent years, however, many research topics have arisen as a result of the problems that are constantly faced in smart-grid and microgrid operations, such as forecasting of the output of power plant production, storage sizing, modeling, and control optimization of photovoltaic systems. Computational intelligence algorithms (evolutionary optimization, neural networks, fuzzy logic, etc.) have become more and more popular as alternative approaches to conventional techniques for solving problems such as modeling, identification, optimization, availability prediction, forecasting, sizing, and control of stand-alone, grid-connected, and hybrid photovoltaic systems. This Special Issue will investigate the most recent developments and research on solar power systems. This Special Issue “Computational Intelligence in Photovoltaic Systems” is highly recommended for readers with an interest in the various aspects of solar power systems, and includes 10 original research papers covering relevant progress in the following (non-exhaustive) fields: Forecasting techniques (deterministic, stochastic, etc.); DC/AC converter control and maximum power point tracking techniques; Sizing and optimization of photovoltaic system components; Photovoltaics modeling and parameter estimation; Maintenance and reliability modeling; Decision processes for grid operators.

PV System Design and Performance

Author:
ISBN: 9783039216222 9783039216239 Year: Pages: 360 DOI: 10.3390/books978-3-03921-623-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Physics (General)
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

Photovoltaic solar energy technology (PV) has been developing rapidly in the past decades, leading to a multi-billion-dollar global market. It is of paramount importance that PV systems function properly, which requires the generation of expected energy both for small-scale systems that consist of a few solar modules and for very large-scale systems containing millions of modules. This book increases the understanding of the issues relevant to PV system design and correlated performance; moreover, it contains research from scholars across the globe in the fields of data analysis and data mapping for the optimal performance of PV systems, faults analysis, various causes for energy loss, and design and integration issues. The chapters in this book demonstrate the importance of designing and properly monitoring photovoltaic systems in the field in order to ensure continued good performance.

Keywords

floating PV generation structure --- fiber reinforced polymeric plastic (FRP) --- pultruded FRP --- sheet molding compound FRP --- structural design --- mooring system --- photovoltaic plants --- software development --- performance analysis --- loss analysis --- graphical malfunction detection --- fuzzy logic controller --- maximum power point tracking (MPPT) --- dc-dc converter --- photovoltaic system --- photovoltaic system --- modeling --- stability analysis --- grid-connected --- photovoltaics --- modules --- shade resilience --- buck converter --- module architecture --- PV array --- FCM algorithm --- cluster analysis --- fault diagnosis --- membership algorithm --- solar energy --- photovoltaic module performance --- organic soiling --- Scanning Electron Microscopy (SEM) --- floating PV systems (FPV) --- floating PV module (FPVM) --- ANOVA --- Bartlett’s test --- Hartigan’s dip test --- Jarque-Bera’s test --- Kruskal-Wallis’ test --- Mood’s Median test --- residential buildings --- Tukey’s test --- urban context --- solar cells --- AC parameters --- underdamped oscillation --- impedance spectroscopy --- partial shading --- photo-generated current --- photovoltaic performance --- maximum power point --- image processing --- photovoltaic (PV) systems monitoring --- malfunction detection --- data analysis --- PV systems --- cluster analysis --- failure detection --- ageing and degradation of PV-modules --- performance analysis --- UV-fluorescence imaging --- photovoltaic modeling --- parameter estimation --- optimization problem --- metaheuristic --- opposition-based learning --- quasi-opposition based learning --- improved cuckoo search algorithm --- PV energy performance --- PV thermal performance --- thermal interaction --- conventional roof membrane --- vegetated/green roof --- Renewable Energy --- PV systems --- forecast --- energy --- simulation --- silicon --- photovoltaics --- modules --- electroluminescence --- defects --- cracks --- performance ratio --- annual yield --- GIS --- PV system --- spatial analyses --- performance ratio --- GIS --- PV module --- system --- population density --- urban compactness --- solar farm --- photovoltaics --- reactive power support --- STATCOM --- technical costs --- photovoltaic systems --- reliability --- real data --- energy yield --- fault tree analysis --- failure mode and effect analysis --- availability --- failure rates

Novel Photoactive Materials

Author:
ISBN: 9783038976509 Year: Pages: 166 DOI: 10.3390/books978-3-03897-651-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Physics (General) --- Science (General)
Added to DOAB on : 2019-03-05 14:29:32
License:

Loading...
Export citation

Choose an application

Abstract

Photoactivity represents the ability of a material, generally speaking a semiconductor, to become active when interacting with light. It can be declined in many ways, and several functionalities arising from this behavior of materials can be exploited, all leading to positive repercussions on our environment. There are several classes of effects of photoactivity, all of which have been deeply investigated in the last few decades, allowing to develop more and more efficient materials and devices. All of them share a common point, that is, the interaction of a material with light, although many different materials are taken into account depending on the effect desired—from elemental semiconductors like silicon, to more complex compounds like CdTe or GaAs, to metal oxides like TiO2 and ZnO. Given the broadness of the field, a huge number of works fall within this topic, and new areas of discovery are constantly explored. The special issue “Novel Photoactive Materials” has been proposed as a means to present recent developments in the field, and for this reason the articles included touch different aspects of photoactivity, from photocatalysis to photovoltaics to light emitting materials.

Innovative Technologies and Services for Smart Cities

Authors: ---
ISBN: 9783039211814 9783039211821 Year: Pages: 214 DOI: 10.3390/books978-3-03921-182-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Electrical and Nuclear Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

A smart city is a modern technology-driven urban area which uses sensing devices, information, and communication technology connected to the internet of things (IoTs) for the optimum and efficient utilization of infrastructures and services with the goal of improving the living conditions of citizens. Increasing populations, lower budgets, limited resources, and compatibility of the upgraded technologies are some of the few problems affecting the implementation of smart cities. Hence, there is continuous advancement regarding technologies for the implementation of smart cities. The aim of this Special Issue is to report on the design and development of integrated/smart sensors, a universal interfacing platform, along with the IoT framework, extending it to next-generation communication networks for monitoring parameters of interest with the goal of achieving smart cities. The proposed universal interfacing platform with the IoT framework will solve many challenging issues and significantly boost the growth of IoT-related applications, not just in the environmental monitoring domain but in the other key areas, such as smart home, assistive technology for the elderly care, smart city with smart waste management, smart E-metering, smart water supply, intelligent traffic control, smart grid, remote healthcare applications, etc., signifying benefits for all countries.

Glassy Materials Based Microdevices

Authors: ---
ISBN: 9783038976189 Year: Pages: 284 DOI: 10.3390/books978-3-03897-619-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Electrical and Nuclear Engineering --- General and Civil Engineering --- Technology (General)
Added to DOAB on : 2019-03-21 15:50:41
License:

Loading...
Export citation

Choose an application

Abstract

Microtechnology has changed our world since the last century, when silicon microelectronics revolutionized sensor, control and communication areas, with applications extending from domotics to automotive, and from security to biomedicine. The present century, however, is also seeing an accelerating pace of innovation in glassy materials; as an example, glass-ceramics, which successfully combine the properties of an amorphous matrix with those of micro- or nano-crystals, offer a very high flexibility of design to chemists, physicists and engineers, who can conceive and implement advanced microdevices. In a very similar way, the synthesis of glassy polymers in a very wide range of chemical structures offers unprecedented potential of applications. The contemporary availability of microfabrication technologies, such as direct laser writing or 3D printing, which add to the most common processes (deposition, lithography and etching), facilitates the development of novel or advanced microdevices based on glassy materials. Biochemical and biomedical sensors, especially with the lab-on-a-chip target, are one of the most evident proofs of the success of this material platform. Other applications have also emerged in environment, food, and chemical industries. The present Special Issue of Micromachines aims at reviewing the current state-of-the-art and presenting perspectives of further development. Contributions related to the technologies, glassy materials, design and fabrication processes, characterization, and, eventually, applications are welcome.

Keywords

micro-crack propagation --- severing force --- quartz glass --- micro-grinding --- microfluidics --- single-cell analysis --- polymeric microfluidic flow cytometry --- single-cell protein quantification --- glass molding process --- groove --- roughness --- filling ratio --- label-free sensor --- optofluidic microbubble resonator --- detection of small molecules --- chalcogenide glass --- infrared optics --- precision glass molding --- aspherical lens --- freeform optics --- micro/nano patterning --- 2D colloidal crystal --- soft colloidal lithography --- strain microsensor --- vectorial strain gauge --- compound glass --- microsphere --- resonator --- lasing --- sensing --- microresonator --- whispering gallery mode --- long period grating --- fiber coupling --- distributed sensing --- chemical/biological sensing --- direct metal forming --- glassy carbon micromold --- enhanced boiling heat transfer --- metallic microstructure --- microspheres --- microdevices --- glass --- polymers --- solar energy --- nuclear fusion --- thermal insulation --- sol-gel --- Ag nanoaggregates --- Yb3+ ions --- down-shifting --- photonic microdevices --- alkali cells --- MEMS vapor cells --- optical cells --- atomic spectroscopy --- microtechnology --- microfabrication --- MEMS --- microfluidic devices --- laser materials processing --- ultrafast laser micromachining --- ultrafast laser welding --- enclosed microstructures --- glass --- porous media --- fluid displacement --- spray pyrolysis technique --- dielectric materials --- luminescent materials --- photovoltaics --- frequency conversion --- device simulations --- europium --- luminescence --- hybrid materials --- microdevices --- light --- photon --- communications --- waveguides --- fibers --- biosensors --- microstructured optical fibers --- whispering gallery modes --- light localization --- optofluidics --- lab-on-a-chip --- femtosecond laser --- laser micromachining --- diffusion

Listing 1 - 10 of 15 << page
of 2
>>
Sort by
Narrow your search