Search results: Found 17

Listing 1 - 10 of 17 << page
of 2
>>
Sort by
Optical antennas : linear and nonlinear excitation and emission

Author:
ISBN: 9783866447653 Year: Pages: IX, 186 p. DOI: 10.5445/KSP/1000024929 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:02:01
License:

Loading...
Export citation

Choose an application

Abstract

The linear and nonlinear resonance behaviour of optical antennas (metallic nanostructures showing resonance behaviour at optical frequencies) made of gold and aluminum using electron-beam lithography is investigated. Specifically, it is of interest how the emission behaviour is changed by the coupling of two antenna arms via a small gap. Experimental techniques applied include dark-field spectroscopy and two-photon luminescence.

Photon-Counting Image Sensors

Authors: --- --- --- --- et al.
ISBN: 9783038423751 9783038423744 Year: Pages: XII, 366 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering
Added to DOAB on : 2017-05-19 08:18:39
License:

Loading...
Export citation

Choose an application

Abstract

Photon-counting image sensors represent a possible paradigm shift in solid-state image sensors. In these devices, photons are individually sensed and counted. To count photons, the devices must have high quantum efficiency, deep sub-electron read noise and the ability to read-out in digital form at high speed. This all-invited content from the top image sensor researchers around the world, reviews the state of the art of photon-counting image sensors in a variety of configurations, including CMOS image sensors and devices using avalanche multiplication, and for visible photons as well as higher energy photons such as ultraviolet and x-rays. New methods of creating image information from photon-counting image sensors is also described. This new emerging technology will have applications in low-light scientific imaging for aerospace and defense, and in the life sciences. It may also have applications in cryptography, communications, security cameras, 3D imaging and photography.

Improving the Spectral Bandwidth of Superconducting Nanowire Single-Photon Detectors (SNSPDs)

Author:
Book Series: Karlsruher Schriftenreihe zur Supraleitung / Hrsg. Prof. Dr.-Ing. M. Noe, Prof. Dr. rer. nat. M. Siegel ISSN: 18691765 ISBN: 9783731507451 Year: Volume: 20 Pages: VII, 155 p. DOI: 10.5445/KSP/1000077944 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-28 18:37:01
License:

Loading...
Export citation

Choose an application

Abstract

This work presents a comprehensive investigation of the influence of geometry-dependent factors on performance metrics of superconducting single-photon detectors. With fundamental knowledge, main investigations are focused to extend the spectral bandwidth and to enhance the detection efficiency, especially in infrared range. The developed technology of single-spiral detectors and unconventional electron-beam lithography allows to improve the performance of superconducting detectors.

Real-time imaging systems for superconducting nanowire single-photon detector arrays

Author:
Book Series: Karlsruher Schriftenreihe zur Supraleitung / Hrsg. Prof. Dr.-Ing. M. Noe, Prof. Dr. rer. nat. M. Siegel ISSN: 18691765 ISBN: 9783731502296 Year: Volume: 16 Pages: IX, 190 p. DOI: 10.5445/KSP/1000041279 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:01:57
License:

Loading...
Export citation

Choose an application

Abstract

Superconducting nanowire singe-photon detectors (SNSPD) are promising detectors in the field of applications, where single-photon resolution is required like in quantum optics, spectroscopy or astronomy. These cryogenic detectors gain from a broad spectrum in the optical and infrared range and deliver low dark count rates and low jitter times. This thesis improves the understanding of the detection mechanism of SNSPDs and intodruces new and promising multi-pixel readout concepts.

Millimeter-Precision Laser Rangefinder Using a Low-Cost Photon Counter

Author:
Book Series: Karlsruhe Series in Photonics and Communications / Karlsruhe Institute of Technology, Institute of Photonics and Quantum Electronics (IPQ) ISSN: 18651100 ISBN: 9783731501527 Year: Volume: 16 Pages: X, 267 p. DOI: 10.5445/KSP/1000037714 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:02:00
License:

Loading...
Export citation

Choose an application

Abstract

In this book we successfully demonstrate a millimeter-precision laser rangefinder using a low-cost photon counter. An application-specific integrated circuit (ASIC) comprises timing circuitry and single-photon avalanche diodes (SPADs) as the photodetectors. For the timing circuitry, a novel binning architecture for sampling the received signal is proposed which mitigates non-idealities that are inherent to a system with SPADs and timing circuitry in one chip.

Neuroanatomy for the XXIst Century

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889199167 Year: Pages: 199 DOI: 10.3389/978-2-88919-916-7 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Neurology
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

An explosion of new techniques with vastly improved visualization and sensitivity is leading a veritable revolution in modern neuroanatomy. Basic questions related to cell types, input localization, and connectivity are being re-visited and tackled with significantly more accurate and higher resolution experimental approaches. A major goal of this e-Book is thus to highlight in one place the impressive range of available techniques, even as these are fast becoming routine. This is not meant as a technical review, however, but rather will project the technical explosion as indicative of a field now in a vibrant state of renewal. Thus, contributions will be mainly research articles using the newer techniques. A second goal is to showcase what has become the conspicuous interdisciplinary reach of the field: neuroanatomical standards and the close association of structure-function and underlying circuitry mechanisms are increasingly relevant to investigations in development, physiology, and disease. Another feature of this Research Topic is that it includes a breadth of cross-species contributions from investigators working with rodent, nonhuman primate, and human brains. This is important since most of our current knowledge of brain structure has been obtained from experimental animals. However, recent technical advances, coupled with researcher willingness to use the human tissue available, will undoubtedly lead to major advances in the near future regarding human brain mapping and connectomes. Thus, of particular interest will be the methods that can help to define general wiring principles in the brain, both structural and functional. Overall, the state of the field is: exciting.

In Vivo Imaging in Pharmacological Research

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889452378 Year: Pages: 222 DOI: 10.3389/978-2-88945-237-8 Language: English
Publisher: Frontiers Media SA
Subject: Therapeutics --- Science (General)
Added to DOAB on : 2017-10-13 14:57:01
License:

Loading...
Export citation

Choose an application

Abstract

The discovery and development of a biological active molecule with therapeutic properties is an ever increasing complex task, highly unpredictable at the early stages and marked, in the end, by high rates of failure. As a consequence, the overall process leading to the production of a successful drug is very costly. The improvement of the net outcome in drug discovery and development would require, amongst other important factors, a good understanding of the molecular events that characterize the disease or pathology in order to better identify likely targets of interest, to optimize the interaction of an active agent (small molecule or macromolecule of natural or synthetic origin) with those targets, and to facilitate the study of the pharmacokinetics, pharmacodynamics and toxicity of an active agent in suitable models and in human subjects. The objective of this Research Topic is to highlight new developments and applications of imaging techniques with the objective of performing pharmacological studies in vivo, in animal models and in humans. In the domain of drug discovery, the pharmacological and biomedical questions constitute the center of attention. In this sense, it is fundamental to keep in mind the strengths and limitations of each analytical or imaging technique. At the end, the judicious application of the technique with the aim of supporting the search for answers to manifold questions arising during a long and painstaking path provides a continuous role for imaging within the complex area of drug discovery and development.

The Chemistry of Imaging Probes

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889455980 Year: Pages: 129 DOI: 10.3389/978-2-88945-598-0 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Chemistry (General)
Added to DOAB on : 2019-01-23 14:53:43
License:

Loading...
Export citation

Choose an application

Abstract

Over the past decades, the field of molecular imaging has been rapidly growing involving multiple disciplines such as medicine, biology, chemistry, pharmacology and biomedical engineering. Any molecular imaging procedure requires an imaging probe that is an agent used to visualize, characterize and quantify biological processes in living systems. Such a probe typically consists of an agent that usually produces signal for imaging purpose, a targeting moiety, and a linker connecting the targeting moiety and the signaling agent.Many challenging problems of molecular imaging can be addressed by exploiting the great possibilities offered by modern synthetic organic and coordination chemistry and the powerful procedures provided by conjugation chemistry. Thus, chemistry plays a decisive role in the development of this cutting-edge methodology.Currently, the diagnostic imaging modalities include Magnetic Resonance Imaging (MRI), Computed Tomography (CT), Ultrasound (US), Nuclear Imaging (PET, SPECT), Optical Imaging (OI) and Photoacoustic Imaging (PAI). Each of these imaging modalities has its own advantages and disadvantages, and therefore, a multimodal approach combining two techniques is often adopted to generate complementary anatomical and functional information of the disease. The basis for designing imaging probes for a given application is dictated by the chosen imaging modality, which in turn is dependent upon the concentration and localization profile (vascular, extracellular matrix, cell membrane, intracellular, near or at the cell nucleus) of the target molecule. The development of high-affinity ligands and their conjugation to the targeting vector is also one of the key steps for pursuing efficient molecular imaging probes. Other excellent reviews, text and monographs describe the principles of biomedical imaging, focusing on molecular biology or on the physics behind the techniques. This Research Topic aims to show how chemistry can offer molecular imaging the opportunity to express all its potential.

The CERN Resonant WISP Search (CROWS)

Author:
Book Series: Karlsruher Forschungsberichte aus dem Institut für Hochleistungsimpuls- und Mikrowellentechnik ISSN: 21922764 ISBN: 9783731501992 Year: Volume: 5 Pages: XIV, 183 p. DOI: 10.5445/KSP/1000039767 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:02:01
License:

Loading...
Export citation

Choose an application

Abstract

The subject of this work is the design, implementation and first results of the ""CERN Resonant WISP Search"" (CROWS), which probes the existence of Axion Like Particles and Hidden Sector Photons (HSPs) using microwave techniques. By exploiting low loss cavity resonators, multiple layers of electromagnetic shielding and a micro-Hz bandwidth detection scheme, new exclusion limits could be set. For HSPs, sensitivity was improved by a factor of ~7 compared to previous laboratory experiments.

Optical MEMS

Authors: ---
ISBN: 9783039213030 9783039213047 Year: Pages: 172 DOI: 10.3390/books978-3-03921-304-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Optical microelectromechanical systems (MEMS), microoptoelectromechanical systems (MOEMS), or optical microsystems are devices or systems that interact with light through actuation or sensing at a micro- or millimeter scale. Optical MEMS have had enormous commercial success in projectors, displays, and fiberoptic communications. The best-known example is Texas Instruments’ digital micromirror devices (DMDs). The development of optical MEMS was impeded seriously by the Telecom Bubble in 2000. Fortunately, DMDs grew their market size even in that economy downturn. Meanwhile, in the last one and half decade, the optical MEMS market has been slowly but steadily recovering. During this time, the major technological change was the shift of thin-film polysilicon microstructures to single-crystal–silicon microsructures. Especially in the last few years, cloud data centers are demanding large-port optical cross connects (OXCs) and autonomous driving looks for miniature LiDAR, and virtual reality/augmented reality (VR/AR) demands tiny optical scanners. This is a new wave of opportunities for optical MEMS. Furthermore, several research institutes around the world have been developing MOEMS devices for extreme applications (very fine tailoring of light beam in terms of phase, intensity, or wavelength) and/or extreme environments (vacuum, cryogenic temperatures) for many years. Accordingly, this Special Issue seeks to showcase research papers, short communications, and review articles that focus on (1) novel design, fabrication, control, and modeling of optical MEMS devices based on all kinds of actuation/sensing mechanisms; and (2) new developments of applying optical MEMS devices of any kind in consumer electronics, optical communications, industry, biology, medicine, agriculture, physics, astronomy, space, or defense.

Keywords

scanning micromirror --- electromagnetic actuator --- angle sensor --- flame retardant 4 (FR4) --- variable optical attenuator (VOA) --- wavelength dependent loss (WDL) --- polarization dependent loss (PDL) --- micro-electro-mechanical systems (MEMS) --- tunable fiber laser --- echelle grating --- DMD chip --- MEMS scanning micromirror --- fringe projection --- laser stripe scanning --- quality map --- large reflection variations --- 3D measurement --- laser stripe width --- vibration noise --- MLSSP --- MEMS scanning mirror --- wavefront sensing --- digital micromirror device --- ocular aberrations --- dual-mode liquid-crystal (LC) device --- infrared Fabry–Perot (FP) filtering --- LC micro-lenses controlled electrically --- spectrometer --- infrared --- digital micromirror device (DMD) --- signal-to-noise ratio (SNR) --- stray light --- programmable spectral filter --- digital micromirror device --- optical switch --- microscanner --- input shaping --- open-loop control --- quasistatic actuation --- residual oscillation --- usable scan range --- higher-order modes --- resonant MEMS scanner --- electrostatic --- parametric resonance --- NIR fluorescence --- intraoperative microscope --- 2D Lissajous --- fluorescence confocal --- metasurface --- metalens --- field of view (FOV) --- achromatic --- Huygens’ metalens --- bio-optical imaging --- optical coherence tomography --- confocal --- two-photon --- spectrometer --- MEMS mirror --- electrothermal bimorph --- Cu/W bimorph --- electrothermal actuation --- reliability --- n/a

Listing 1 - 10 of 17 << page
of 2
>>
Sort by
Narrow your search