Search results: Found 3

Listing 1 - 3 of 3
Sort by
Current challenges in photosynthesis: From natural to artificial

Authors: --- --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889192861 Year: Pages: 102 DOI: 10.3389/978-2-88919-286-1 Language: English
Publisher: Frontiers Media SA
Subject: Physiology --- Botany --- Science (General)
Added to DOAB on : 2015-12-10 11:59:07
License:

Loading...
Export citation

Choose an application

Abstract

Jules Verne (1828-1905), author of Around the World in Eighty Days (1873) and Journey to the Center of the Earth (1864), wrote in 1875:"I believe that water will one day be used as a fuel, because the hydrogen and oxygen which constitute it, used separately or together, will furnish an inexhaustible source of heat and light. I therefore believe that, when coal (oil) deposits are oxidised, we will heat ourselves by means of water. Water is the fuel of the future". Solar energy is the only renewable energy source that has sufficient capacity for the global energy need; it is the only one that can address the issues of energy crisis and global climate change. A vast amount of solar energy is harvested and stored via photosynthesis in plants, algae, and cyanobacteria since over 3 billion years. Today, it is estimated that photosynthesis produces more than 100 billion tons of dry biomass annually, which would be equivalent to a hundred times the weight of the total human population on our planet at the present time, and equal to a global energy storage rate of about 100 TW. The solar power is the most abundant source of renewable energy, and oxygenic photosynthesis uses this energy to power the planet using the amazing reaction of water splitting. During water splitting, driven ultimately by sunlight, oxygen is released into the atmosphere, and this, along with food production by photosynthesis, supports life on our earth. The other product of water oxidation is “hydrogen” (proton and electron). This ‘hydrogen’ is not normally released into the atmosphere as hydrogen gas but combined with carbon dioxide to make high energy containing organic molecules. When we burn fuels we combine these organic molecules with oxygen. The design of new solar energy systems must adhere to the same principle as that of natural photosynthesis. For us to manipulate it to our benefit, it is imperative that we completely understand the basic processes of natural photosynthesis, and chemical conversion, such as light harvesting, excitation energy transfer, electron transfer, ion transport, and carbon fixation. Equally important, we must exploit application of this knowledge to the development of fully synthetic and/or hybrid devices. Understanding of photosynthetic reactions is not only a satisfying intellectual pursuit, but it is important for improving agricultural yields and for developing new solar technologies. Today, we have considerable knowledge of the working of photosynthesis and its photosystems, including the water oxidation reaction. Recent advances towards the understanding of the structure and the mechanism of the natural photosynthetic systems are being made at the molecular level. To mimic natural photosynthesis, inorganic chemists, organic chemists, electrochemists, material scientists, biochemists, biophysicists, and plant biologists must work together and only then significant progress in harnessing energy via “artificial photosynthesis” will be possible. This Research Topic provides recent advances of our understanding of photosynthesis, gives to our readers recent information on photosynthesis research, and summarizes the characteristics of the natural system from the standpoint of what we could learn from it to produce an efficient artificial system, i.e., from the natural to the artificial. This topic is intended to include exciting breakthroughs, possible limitations, and open questions in the frontiers in photosynthesis research.

Molecular Mechanisms and Genetics of Plant Resistance to Abiotic Stress

Authors: ---
ISBN: 9783039281220 9783039281237 Year: Pages: 152 DOI: 10.3390/books978-3-03928-123-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Plant Sciences
Added to DOAB on : 2020-04-07 23:07:08
License:

Loading...
Export citation

Choose an application

Abstract

We are currently experiencing a climate crisis that is associated with extreme weather events worldwide. Some of its most noticeable effects are increases in temperatures, droughts, and desertification. These effects are already making whole regions unsuitable for agriculture. Therefore, we urgently need global measures to mitigate the effects of climate breakdown as well as crop alternatives that are more stress-resilient. These crop alternatives can come from breeding new varieties of well-established crops, such as wheat and barley. They can also come from promoting underutilized crop species that are naturally tolerant to some stresses, such as quinoa. Either way, we need to gather more knowledge on how plants respond to stresses related to climate breakdown, such as heat, water-deficit, flooding high salinity, nitrogen, and heavy metal stress. This Special Issue provides a timely collection of recent advances in the understanding of plant responses to these stresses. This information will definitely be useful to the design of new strategies to prevent the loss of more cultivable land and to reclaim the land that has already been declared unsuitable.

Alpine and Polar Treelines in a Changing Environment

Author:
ISBN: 9783039286300 / 9783039286317 Year: Pages: 268 DOI: 10.3390/books978-3-03928-631-7 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Botany
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Concerns have been raised with respect to the state of high-altitude and high-latitude treelines, as they are anticipated to undergo considerable modifications due to global changes, and especially due to climate warming. As high-elevation treelines are temperature-limited vegetation boundaries, they are considered to be sensitive to climate warming. As a consequence, in this future, warmer environment, an upward migration of treelines is expected because low air and root-zone temperatures constrain their regeneration and growth. Despite the ubiquity of climate warming, treeline advancement is not a worldwide phenomenon: some treelines have been advancing rapidly, others have responded sluggishly or have remained stable. This variation in responses is attributed to the potential interaction of a continuum of site-related factors that may lead to the occurrence of locally conditioned temperature patterns. Competition amongst species and below-ground resources have been suggested as additional factors explaining the variability in the movement of treelines. This Special Issue (book) is dedicated to the discussion of treeline responses to changing environmental conditions in different areas around the globe.

Keywords

Changbai Mountain --- Erman’s birch --- microsite --- alpine treeline --- non-structural carbohydrates (NSCs) --- treeline --- climate change --- ecosystem manipulation --- space-for-time substitution --- long-term trends --- Central Austrian Alps --- 15N natural abundance --- nitrogen cycling --- treeline --- shrubline --- altitude --- light quantity --- light quality --- spectrometer --- shoot elongation --- tree seedlings --- forest climatology --- Switzerland --- temperature --- relative air humidity --- thermal continentality --- foehn winds --- expert elicitation --- knowledge engineering --- apical control --- multi-stemmed growth form --- Pinus cembra --- treeline --- climate change --- experimental rain exclusion --- plant water availability --- soil drought --- treeline --- sap flow --- Picea abies --- Larix decidua --- drought --- Mediterranean climate --- photoinhibition --- photosynthetic pigments --- tocopherol --- climate change --- climate zone --- environmental stress --- forest edge --- precipitation --- tree regeneration --- tree seedling recruitment --- upward advance --- alpine timberline --- conifer shrub --- pit aspiration --- refilling --- winter stress --- xylem embolism --- tree line --- sub-Antarctic --- westerly winds --- postglacial --- Holocene --- Southern Ocean --- climate change --- palynology --- cloud --- peat --- dendroclimatology --- elevational gradients --- drought --- western Montana --- Rocky Mountains --- treeline --- climate change --- fungal ecology --- diversity --- monitoring --- NDVI --- permafrost --- remote sensing data --- history of treeline research --- elevational treeline --- polar treeline --- treeline dynamics --- timberline --- higher altitude --- chlorophyll --- carotenoids --- climate change --- Pinus sibirica --- Abies sibirica --- elevational transect --- basal area increment --- climate warming --- conifers --- European Alps --- growth trend --- n/a

Listing 1 - 3 of 3
Sort by
Narrow your search