Search results: Found 3

Listing 1 - 3 of 3
Sort by
MEMS Technology for Biomedical Imaging Applications

Authors: ---
ISBN: 9783039216048 9783039216055 Year: Pages: 218 DOI: 10.3390/books978-3-03921-605-5 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

Biomedical imaging is the key technique and process to create informative images of the human body or other organic structures for clinical purposes or medical science. Micro-electro-mechanical systems (MEMS) technology has demonstrated enormous potential in biomedical imaging applications due to its outstanding advantages of, for instance, miniaturization, high speed, higher resolution, and convenience of batch fabrication. There are many advancements and breakthroughs developing in the academic community, and there are a few challenges raised accordingly upon the designs, structures, fabrication, integration, and applications of MEMS for all kinds of biomedical imaging. This Special Issue aims to collate and showcase research papers, short commutations, perspectives, and insightful review articles from esteemed colleagues that demonstrate: (1) original works on the topic of MEMS components or devices based on various kinds of mechanisms for biomedical imaging; and (2) new developments and potentials of applying MEMS technology of any kind in biomedical imaging. The objective of this special session is to provide insightful information regarding the technological advancements for the researchers in the community.

Keywords

tilted microcoil --- electromagnetically-driven --- surface micromachining --- polyimide capillary --- MEMS --- ego-motion estimation --- indoor navigation --- monocular camera --- scale ambiguity --- wearable sensors --- photoacoustic --- microelectromechanical systems (MEMS) --- miniaturized microscope --- lead-free piezoelectric materials --- high frequency ultrasonic transducer --- needle-type --- high spatial resolution --- ultrahigh frequency ultrasonic transducer --- Si lens --- tight focus --- finite element simulation --- low noise amplifier (LNA) --- noise figure --- smart hydrogels --- bio-sensors --- chemo-sensor --- electrochemical sensors --- transduction techniques --- near-field microwave --- microwave resonator --- microwave remote sensing --- potentiometric sensor --- gold nanoparticles --- metal oxide field-effect transistor --- chemo-FET --- bio-FET --- photoacoustic imaging --- microelectromechanical systems (MEMS) --- MEMS scanning mirror --- micromachined US transducer --- microring resonator --- acoustic delay line --- MEMS mirror --- Lissajous scanning --- pseudo-resonant --- sensing --- imaging --- display --- MEMS actuators --- microendoscopy --- confocal --- two-photon --- wide-filed imaging --- photoacoustic --- fluorescence --- scanner --- capacitive micromachined ultrasonic transducer (CMUT) --- acoustics --- micromachining --- capacitive --- transducer --- modelling --- fabrication --- 3D Printing --- piezoelectric array --- ultrasonic transducer --- ultrasonic imaging --- micro-optics --- bioimaging --- microtechnology --- microelectromechanical systems (MEMS) --- in vitro --- in vivo --- cantilever waveguide --- electrostatic actuator --- non-resonating scanner --- optical scanner --- push-pull actuator --- rib waveguide --- n/a

SPIG2018

Authors: --- --- ---
ISBN: 9783038978503 9783038978510 Year: Pages: 288 DOI: 10.3390/books978-3-03897-851-0 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Physics (General) --- Nuclear Physics
Added to DOAB on : 2019-04-25 16:37:17
License:

Loading...
Export citation

Choose an application

Abstract

This Special Issue covers a wide range of topics from fundamental studies to applications of ionized gases. It is dedicated to four topics of interest: 1. ATOMIC COLLISION PROCESSES (electron and photon interactions with atomic particles, heavy particle collisions, swarms, and transport phenomena); 2. PARTICLE AND LASER BEAM INTERACTION WITH SOLIDS (atomic collisions in solids, sputtering and deposition, and laser and plasma interactions with surfaces); 3. LOW TEMPERATURE PLASMAS (plasma spectroscopy and other diagnostic methods, gas discharges, and plasma applications and devices); 4. GENERAL PLASMAS (fusion plasmas, astrophysical plasmas, and collective phenomena). This Special Issue of Atoms will highlight the need for continued research on ionized gas physics in different topics ranging from fundamental studies to applications, and will review current investigations.

Keywords

strong-field physics --- attoscience --- bicircular field --- high-order harmonic generation --- above-threshold ionization --- spin-polarized electrons --- capacitively-coupled discharge --- oxygen --- particle-in-cell/Monte Carlo collision --- electron heating --- secondary electron emission --- Large Helical Device (LHD) --- deuterium experiment --- ion temperature of 10 keV --- plasma research --- spectroscopic study --- dispersion interferometer --- modified theories of gravity --- methods: analytical --- methods: numerical --- galaxies: elliptical --- galaxies: fundamental parameters --- non-equilibrium --- collisions --- radiation --- planetary atmospheric entry --- laser matter interaction --- laser-induced breakdown --- plasma --- spectroscopy --- streak camera --- plasma --- spectral lines --- Stark broadening --- oxygen --- silicon --- spectroscopy --- gas discharges --- plasma applications --- databases --- virtual observatory --- cross sections --- rate coefficients --- runway electron --- plasma current --- fusion plasma --- tokamak --- glow discharge --- argon --- nitrogen admixture --- discharge voltage --- diffuse discharge --- constricted discharge --- electrical theory of DBDs --- QV-plot --- instantaneous power --- rainbow scattering --- positron channeling effect --- time-dependent Schrödinger equation --- chiral single wall carbon nanotubes --- black hole physics --- cosmology --- quasar spectroscopy --- cosmological parameters --- ionized gas --- broad line region --- Rydberg atoms --- dynamic instability --- control of atomic states --- Förster resonance --- plasma spectroscopy --- Stark broadening --- plasma diagnostics --- line shape modeling --- Zeeman-Doppler broadening --- Balmer line series --- radiative recombination --- photoacoustic --- photothermal --- inverse problem --- thermal memory --- minimum volume cell --- neural networks --- thermal diffusivity --- conductivity --- linear coefficient of thermal extension --- AGN --- black holes --- gravitational waves --- binary black holes --- quasars --- photodetachment --- magnetically confined fusion --- neutral beam injection --- plasma heating --- optical cavity amplification --- low-energy electrons --- electron–molecule interactions --- astrochemistry --- laboratory plasma --- astrophysical plasma --- fusion plasma --- lasers --- stars --- extragalactic objects --- spectra --- spectroscopy --- scaling laws

State-of-the-art Laser Gas Sensing Technologies

Authors: --- ---
ISBN: 9783039283989 9783039283996 Year: Pages: 278 DOI: 10.3390/books978-3-03928-399-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-04-07 23:07:08
License:

Loading...
Export citation

Choose an application

Abstract

Trace gas sensing technologies are widely used in many applications, such as environmental monitoring, life science, medical diagnostics, and planetary exploration. On the one hand, laser sources have developed greatly due to the rapid development of laser media and laser techniques in recent years. Some novel lasers such as solid-state, diode, and quantum cascade lasers have experienced significant progress. At present, laser wavelengths can cover the range from ultraviolet to terahertz, which could promote the development of laser gas sensing technologies significantly. On the other hand, some new gas sensing methods have appeared, such as photothermal spectroscopy and photoacoustic spectroscopy. Laser spectroscopy-based gas sensing techniques have the advantages of high sensitivity, non-invasiveness, and allowing in situ, real-time observation. Due to the rapid and recent developments in laser source as well as the great merits of laser spectroscopy-based gas sensing techniques, this book aims to provide an updated overview of the state-of-the-art laser gas sensing technologies.

Keywords

tunable mid-infrared solid-state laser --- thermal control --- all-fiber laser --- thermoelectric cooling --- finite-element analysis --- optical parametric oscillator --- Tm,Ho:LuVO4 laser --- PQS --- graphene saturable absorber --- mid-infrared --- single-frequency --- optical parametric oscillator (OPO) --- MgO:PPLN crystal --- continuous-wave (CW) --- diffuse integrating cavity --- TDLAS --- gas detection --- non-linearity --- quartz-enhanced photoacoustic spectroscopy --- quartz tuning fork --- gas sensing --- detection limit --- laser spectroscopy --- practical applications --- real-time observation --- optical sensing --- stokes vectors --- information processing technology --- tunable laser absorption spectroscopy --- mid-infrared fingerprint spectrum --- broadband spectrum --- trace gas detection --- wavelength modulation spectroscopy --- quantum cascade lasers --- interband cascade lasers --- carbon dioxide monitoring --- absorption spectroscopy --- temperature compensation --- wavelength modulation --- methane detection --- support vector machine --- chicken swarm optimization --- algorithm --- concentration prediction --- combustion diagnostic --- femtosecond laser --- two-photon femtosecond laser-induced fluorescence --- femtosecond laser-induced breakdown spectroscopy --- femtosecond laser electronic excitation tagging --- filament-induced nonlinear spectroscopy --- femtosecond laser-induced plasma spectroscopy --- hollow-core photonic crystal fiber --- GRIN fiber probe --- coupling efficiency --- gas sensing --- near-infrared --- C2H2 detection --- TDLAS --- time division multiplexing differential modulation --- a multi-reflection chamber --- laser absorption spectroscopy (LAS) --- combustion sensing --- direct absorption spectroscopy (DAS) --- wavelength modulation spectroscopy (WMS) --- design optimization --- noise reduction algorithms --- methane --- tunable diode laser --- wavelength modulation spectroscopy --- frequency modulation spectroscopy --- two-tone frequency modulation spectroscopy --- photothermal spectroscopy --- gas sensing --- detection limit --- laser spectroscopy --- practical applications --- intracavity gas detection --- interferometric gas detection --- deep-sea natural gas hydrate exploration --- 13CO2/12CO2 isotope ratio detection --- TDLAS technique --- mid-infrared ICL --- n/a

Listing 1 - 3 of 3
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (3)


License

CC by-nc-nd (3)


Language

english (3)


Year
From To Submit

2020 (1)

2019 (2)