Search results: Found 4

Listing 1 - 4 of 4
Sort by
Advancements in Gel Science—A Special Issue in Memory of Toyoichi Tanaka

Author:
ISBN: 9783039213436 9783039213443 Year: Pages: 178 DOI: 10.3390/books978-3-03921-344-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- Chemical Technology
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

A gel is a state of matter that consists of a three-dimensional cross-linked polymer network and a large amount of solvent. Because of their structural characteristics, gels play important roles in science and technology. The science of gels has attracted much attention since the discovery of the volume phase transition by Professor Toyoichi Tanala at MIT in 1978. MDPI planned to publish a Special Issue in Gels to celebrate the 40th anniversary of this discovery, which received submissions of 13 original papers and one review from various areas of science. We believe that readers will find this Special Issue informative as to the recent advancements of gel research and the broad background of gel science.

Keywords

gel --- thermoresponsive property --- monomer sequence --- co-crosslinking --- copolymerization --- acrylamide derivative --- swelling --- volume phase transition --- agarose gel --- compression --- solvent transport --- sucrose --- xylitol --- volume phase transition --- effects of electric charge --- swelling of thermosensitive gels --- sol-gel transition --- site-bond correlated-percolation model for polymer gelation --- gelation temperature --- cloud point temperature --- spinodal temperature --- spinodal decomposition --- janus particle --- anisotropic shape --- phase separation --- wetting --- micrometric confinement --- micropipette aspiration --- PVA gel --- gamma ray sterilization --- artificial hydrogel cartilage --- frictional property --- wear --- xerogel --- Brunauer-Emmett-Teller theory --- Barrett-Joyner-Halenda analysis --- temperature --- solids content --- drying --- solvent exchange --- microgel --- electrophoresis --- light scattering --- paint coating --- wrinkle --- swelling --- buckling --- Sephadex® (crosslinked dextran) --- crosslink density (density of crosslinks) --- ice grain --- ice crystallization during rewarming --- glassy water --- X-ray CT --- XRD --- poly(vinyl alcohol) --- chemical gel --- microcrystallite --- hydrogen bond --- swelling behavior --- hysteresis --- hydrogel --- friction --- fatigue --- wear --- fracture --- crack --- adhesion --- delamination --- poly (acryl amide) gel --- time domain reflectometry (TDR) of dielectric spectroscopy --- pulse field gradient spin echo method of nuclear magnetic resonance (PFG-NMR) --- scaling analysis --- fractal analysis --- heterogeneous gelation dynamics --- moving boundary picture --- phase transition dynamics --- kinetic coefficient --- blood coagulation --- n/a

Mathematical Modeling of Fluid Flow and Heat Transfer in Petroleum Industries and Geothermal Applications

Author:
ISBN: 9783039287208 / 9783039287215 Year: Pages: 470 DOI: 10.3390/books978-3-03928-721-5 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Geothermal energy is the thermal energy generated and stored in the Earth's core, mantle, and crust. Geothermal technologies are used to generate electricity and to heat and cool buildings. To develop accurate models for heat and mass transfer applications involving fluid flow in geothermal applications or reservoir engineering and petroleum industries, a basic knowledge of the rheological and transport properties of the materials involved (drilling fluid, rock properties, etc.)—especially in high-temperature and high-pressure environments—are needed. This Special Issue considers all aspects of fluid flow and heat transfer in geothermal applications, including the ground heat exchanger, conduction and convection in porous media. The emphasis here is on mathematical and computational aspects of fluid flow in conventional and unconventional reservoirs, geothermal engineering, fluid flow, and heat transfer in drilling engineering and enhanced oil recovery (hydraulic fracturing, CO2 injection, etc.) applications.

Keywords

dynamic hydraulic-fracturing experiments --- dynamic crack tip --- fluid front kinetics --- energy conservation analysis --- cost-effective --- frequency conversion technology (FCT) --- ventilation --- methane removal --- computational fluid dynamic (CFD) --- spatiotemporal characteristics --- capacitance-resistance model --- aquifer support --- inter-well connectivity --- production optimization --- karst carbonate reservoir --- tight reservoir --- huff-‘n-puff --- fracture simulation --- enhanced oil recovery --- CO2 diffusion --- percolation model --- fractal theory --- microstructure --- critical porosity --- conductivity --- permeability --- tight oil reservoirs --- fracture compressibility --- numerical simulation --- flowback --- fracture uncertainty --- enhanced geothermal systems --- multiple parallel fractures --- semi-analytical solution --- main gas pipeline --- pressure fluctuations --- unsteady process --- multifractal theory --- fractal theory --- pore structure --- mercury intrusion porosimetry --- pore size distribution --- natural gas --- pipeline network --- continuity/momentum and energy equations coupled --- efficient simulation --- enhanced gas recovery --- longitudinal dispersion coefficient --- injection orientation --- supercritical CO2 --- CO2 permeability --- Coal excavation --- coal and rock fracture --- multiple structural units (MSU) --- energy dissipation --- AE energy --- cement --- non-Newtonian fluids --- rheology --- variable viscosity --- diffusion --- underground coal gasification (UCG) --- economics --- cost of electricity (COE) --- techno-economic model --- methanol --- ammonia --- carbon capture and storage (CCS) --- carbon capture and utilization (CCU) --- electricity generation --- process simulation --- fractal --- slippage effect --- Knudsen diffusion --- surface diffusion --- apparent permeability --- wellbore temperature --- bottom-hole pressure --- multi-pressure system --- comprehensive heat transfer model --- leakage and overflow --- GSHP (ground source heat pump) --- heat transfer --- coupled heat conduction and advection --- nest of tubes --- three-dimensional numerical simulation --- sloshing --- real-scale --- highly viscous fluids --- Navier-Stokes equations --- impact pressure --- flowback --- complex fracture network --- shale oil --- porous media --- fractal theory --- particles model --- permeability --- tube bundle model --- cement slurries --- non-Newtonian fluids --- rheology --- constitutive relations --- viscosity --- yield stress --- thixotropy --- mathematical modeling --- computational fluid dynamics (CFD) --- drilling --- porous media --- multiphase flow --- hydraulic fracturing --- geothermal --- enhanced oil recovery

Fluid Flow in Fractured Porous Media

Authors: ---
ISBN: 9783039214235 9783039214242 Year: Volume: 1 Pages: 578 DOI: 10.3390/books978-3-03921-424-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

The fluid flow in fracture porous media plays a significant role in the assessment of deep underground reservoirs, such as through CO2 sequestration, enhanced oil recovery, and geothermal energy development. Many methods have been employed—from laboratory experimentation to theoretical analysis and numerical simulations—and allowed for many useful conclusions. This Special Issue aims to report on the current advances related to this topic. This collection of 58 papers represents a wide variety of topics, including on granite permeability investigation, grouting, coal mining, roadway, and concrete, to name but a few. We sincerely hope that the papers published in this Special Issue will be an invaluable resource for our readers.

Keywords

scanning electron microscope (SEM) images --- permeability --- high temperature --- Darcy’s law --- confining pressures --- chemical grouts --- grain size of sand --- initial water contained in sand --- grouted sand --- macroscopic mechanical behaviors --- microstructure characteristics --- ductile failure --- gas concentration --- gob-side entry retaining (GER) --- limestone roof --- roof-cutting resistance --- roadside backfill body (RBB) --- solid backfill coal mining --- goaf --- water soaked height --- loose gangue backfill material --- deformation --- crushing ratio --- fracture grouting --- cement–silicate grout --- geophysical prospecting --- seepage --- Yellow River Embankment --- contiguous seams --- water-dripping roadway --- roadway deformation --- bolt support --- pervious concrete --- permeability coefficient --- porosity --- pore distribution characteristics --- strength --- soil–structure interface --- internal erosion --- critical hydraulic gradient --- orthogonal tests --- Pseudo Steady-State (PPS) constant --- finite-conductivity fracture --- conductivity-influence function --- normalized conductivity-influence function --- circular closed reservoir --- glutenite --- gravel --- hydraulic fracture --- numerical simulation --- propagation --- glauberite cavern for storing oil &amp --- gas --- thermal-hydrological-chemical interactions --- temperature --- brine concentration --- microstructure --- micro-CT --- damage --- cyclic heating and cooling --- physical and mechanical parameters --- failure mode --- acoustic emission --- anisotropy --- bedding plane orientation --- coal --- gas --- adsorption–desorption --- laboratory experiment --- pore pressure --- hydro-mechanical coupling --- fracture closure --- constitutive model --- effective stress --- debris flow --- dynamic characteristics --- numerical analysis --- debris-resisting barriers --- coal measures sandstone --- creep characteristics --- seepage pressure --- seepage-creep --- microscopic morphology --- Darcy flow --- heterogeneity --- numerical manifold method --- high-order --- refraction law --- hydraulic fracture network --- cohesive element method --- coal seams --- fracture propagation --- discontinuous natural fracture --- secondary fracture --- fault water inrush --- coupled THM model --- nonlinear flow in fractured porous media --- numerical model --- warning levels of fault water inrush --- bentonite-sand mixtures --- differential settlement --- deformation --- hydraulic conductivity --- crack --- geogrid --- enhanced permeability --- deviatoric stress --- mechanical behavior transition --- CH4 seepage --- volumetric strain --- strain-based percolation model --- rock-soil mechanics --- soft filling medium --- segmented grouting --- split grouting --- model experiment --- reinforcement mechanism --- longwall mining --- gob behaviors --- stress relief --- permeability --- gas drainage --- hard and thick magmatic rocks --- orthogonal ratio test --- similar simulation --- fracture --- bed separation --- disaster-causing mechanism --- artificial joint rock --- shear-flow coupled test --- hydraulic aperture --- roughness --- seepage pressure --- mixing --- conservative solute --- fractal --- roughness --- fracture --- transversely isotropic rocks --- failure mechanism --- particle flow modeling --- interface --- n/a --- fractured porous rock mass --- grouting experiment --- visualization system --- flow law --- layered progressive grouting --- sandstone and mudstone particles --- rheological deformation --- segmented rheological model --- rheological limit strain --- rheological test --- water-rock interaction --- dry-wet cycles --- slope stability --- laboratory experiment --- mechanical properties --- Xinjiang --- land reclamation --- management period --- soil particle size --- fluid flow in reclaimed soil --- effluents --- soil properties --- cohesive soils --- contamination --- time variation --- stabilization --- mixer --- viscoelastic fluid --- pore structure --- orthogonal test --- fluid–solid coupling theory --- similar-material --- regression equation --- optimum proportioning --- hydraulic fracturing --- gas fracturing --- oriented perforation --- fracture propagation --- damage mechanics --- fluid viscosity --- CO2 flooding --- supercritical CO2 --- CO2 geological storage --- tight sandstone gas reservoirs --- enhanced gas recovery --- flotation --- coal particle --- collision angle --- initial settlement position --- particle velocity --- adhesion efficiency --- green mining --- paste-like slurry --- XRD --- intelligent torque rheometer --- on-site monitoring --- cyclic wetting-drying --- deterioration --- sandstone --- mudstone --- elastic modulus --- uniaxial compressive strength --- permeability characteristics --- grading broken gangue --- compressive stress --- compression deformation --- mine shaft --- alternate strata --- surrounding rock --- shaft lining --- relief excavation --- consolidation process --- unsaturated soil --- semi-analytical solution --- impeded drainage boundary --- excess pore-pressures --- coalbed methane (CBM) --- soft coal masses --- pore structure --- fractal pore characteristics --- hydraulic fractures --- PPCZ --- multitude parameters --- propagation pattern --- stress interference --- naturally fracture --- filtration effects --- grout penetration --- unified pipe-network method --- two-phase flow --- fractured porous medium --- new cementitious material --- cement-based paste discharge --- XRD --- TG/DTG --- SEM --- MIP --- mechanical behaviors --- rock fracture --- shear-flow coupled test --- constant normal stiffness conditions --- transmissivity --- hydraulic aperture --- water inrush prevention --- backfill mining --- strata movement --- ground pressure --- floor failure depth --- water–rock interaction --- degradation mechanism --- mixed mode fracture resistance --- fracture criteria --- T-stress --- hydro-power --- high-steep slope --- fractured rock --- permeability --- seepage control --- gas-bearing coal --- electrical potential --- charge separation --- gas adsorption --- damage evolution --- Unsaturation --- chloride --- concrete --- coupling model --- numerical calculation --- debris flow --- forecasting --- rainfall-unstable soil coupling mechanism(R-USCM) --- scoops3D --- Jiaohe --- non-aqueous phase liquid --- finite element method --- two-phase flow --- mixed-form formulation --- FLAC --- pore structure --- movable fluid --- tight sandstones --- Ordos Basin --- tectonically deformed coal --- coal and gas outburst --- coal-like material --- mechanical properties --- deformation feature --- adsorption/desorption properties --- minerals --- mechanical properties --- uniaxial compressive strength --- crack distribution characteristics --- discrete element method --- lignite --- nitric acid modification --- pore structure --- surface characteristics --- adsorption performance --- n/a

Fluid Flow in Fractured Porous Media

Authors: ---
ISBN: 9783039214730 9783039214747 Year: Volume: 2 Pages: 492 DOI: 10.3390/books978-3-03921-474-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

The fluid flow in fracture porous media plays a significant role in the assessment of deep underground reservoirs, such as through CO2 sequestration, enhanced oil recovery, and geothermal energy development. Many methods have been employed—from laboratory experimentation to theoretical analysis and numerical simulations—and allowed for many useful conclusions. This Special Issue aims to report on the current advances related to this topic. This collection of 58 papers represents a wide variety of topics, including on granite permeability investigation, grouting, coal mining, roadway, and concrete, to name but a few. We sincerely hope that the papers published in this Special Issue will be an invaluable resource for our readers.

Keywords

scanning electron microscope (SEM) images --- permeability --- high temperature --- Darcy’s law --- confining pressures --- chemical grouts --- grain size of sand --- initial water contained in sand --- grouted sand --- macroscopic mechanical behaviors --- microstructure characteristics --- ductile failure --- gas concentration --- gob-side entry retaining (GER) --- limestone roof --- roof-cutting resistance --- roadside backfill body (RBB) --- solid backfill coal mining --- goaf --- water soaked height --- loose gangue backfill material --- deformation --- crushing ratio --- fracture grouting --- cement–silicate grout --- geophysical prospecting --- seepage --- Yellow River Embankment --- contiguous seams --- water-dripping roadway --- roadway deformation --- bolt support --- pervious concrete --- permeability coefficient --- porosity --- pore distribution characteristics --- strength --- soil–structure interface --- internal erosion --- critical hydraulic gradient --- orthogonal tests --- Pseudo Steady-State (PPS) constant --- finite-conductivity fracture --- conductivity-influence function --- normalized conductivity-influence function --- circular closed reservoir --- glutenite --- gravel --- hydraulic fracture --- numerical simulation --- propagation --- glauberite cavern for storing oil &amp --- gas --- thermal-hydrological-chemical interactions --- temperature --- brine concentration --- microstructure --- micro-CT --- damage --- cyclic heating and cooling --- physical and mechanical parameters --- failure mode --- acoustic emission --- anisotropy --- bedding plane orientation --- coal --- gas --- adsorption–desorption --- laboratory experiment --- pore pressure --- hydro-mechanical coupling --- fracture closure --- constitutive model --- effective stress --- debris flow --- dynamic characteristics --- numerical analysis --- debris-resisting barriers --- coal measures sandstone --- creep characteristics --- seepage pressure --- seepage-creep --- microscopic morphology --- Darcy flow --- heterogeneity --- numerical manifold method --- high-order --- refraction law --- hydraulic fracture network --- cohesive element method --- coal seams --- fracture propagation --- discontinuous natural fracture --- secondary fracture --- fault water inrush --- coupled THM model --- nonlinear flow in fractured porous media --- numerical model --- warning levels of fault water inrush --- bentonite-sand mixtures --- differential settlement --- deformation --- hydraulic conductivity --- crack --- geogrid --- enhanced permeability --- deviatoric stress --- mechanical behavior transition --- CH4 seepage --- volumetric strain --- strain-based percolation model --- rock-soil mechanics --- soft filling medium --- segmented grouting --- split grouting --- model experiment --- reinforcement mechanism --- longwall mining --- gob behaviors --- stress relief --- permeability --- gas drainage --- hard and thick magmatic rocks --- orthogonal ratio test --- similar simulation --- fracture --- bed separation --- disaster-causing mechanism --- artificial joint rock --- shear-flow coupled test --- hydraulic aperture --- roughness --- seepage pressure --- mixing --- conservative solute --- fractal --- roughness --- fracture --- transversely isotropic rocks --- failure mechanism --- particle flow modeling --- interface --- n/a --- fractured porous rock mass --- grouting experiment --- visualization system --- flow law --- layered progressive grouting --- sandstone and mudstone particles --- rheological deformation --- segmented rheological model --- rheological limit strain --- rheological test --- water-rock interaction --- dry-wet cycles --- slope stability --- laboratory experiment --- mechanical properties --- Xinjiang --- land reclamation --- management period --- soil particle size --- fluid flow in reclaimed soil --- effluents --- soil properties --- cohesive soils --- contamination --- time variation --- stabilization --- mixer --- viscoelastic fluid --- pore structure --- orthogonal test --- fluid–solid coupling theory --- similar-material --- regression equation --- optimum proportioning --- hydraulic fracturing --- gas fracturing --- oriented perforation --- fracture propagation --- damage mechanics --- fluid viscosity --- CO2 flooding --- supercritical CO2 --- CO2 geological storage --- tight sandstone gas reservoirs --- enhanced gas recovery --- flotation --- coal particle --- collision angle --- initial settlement position --- particle velocity --- adhesion efficiency --- green mining --- paste-like slurry --- XRD --- intelligent torque rheometer --- on-site monitoring --- cyclic wetting-drying --- deterioration --- sandstone --- mudstone --- elastic modulus --- uniaxial compressive strength --- permeability characteristics --- grading broken gangue --- compressive stress --- compression deformation --- mine shaft --- alternate strata --- surrounding rock --- shaft lining --- relief excavation --- consolidation process --- unsaturated soil --- semi-analytical solution --- impeded drainage boundary --- excess pore-pressures --- coalbed methane (CBM) --- soft coal masses --- pore structure --- fractal pore characteristics --- hydraulic fractures --- PPCZ --- multitude parameters --- propagation pattern --- stress interference --- naturally fracture --- filtration effects --- grout penetration --- unified pipe-network method --- two-phase flow --- fractured porous medium --- new cementitious material --- cement-based paste discharge --- XRD --- TG/DTG --- SEM --- MIP --- mechanical behaviors --- rock fracture --- shear-flow coupled test --- constant normal stiffness conditions --- transmissivity --- hydraulic aperture --- water inrush prevention --- backfill mining --- strata movement --- ground pressure --- floor failure depth --- water–rock interaction --- degradation mechanism --- mixed mode fracture resistance --- fracture criteria --- T-stress --- hydro-power --- high-steep slope --- fractured rock --- permeability --- seepage control --- gas-bearing coal --- electrical potential --- charge separation --- gas adsorption --- damage evolution --- Unsaturation --- chloride --- concrete --- coupling model --- numerical calculation --- debris flow --- forecasting --- rainfall-unstable soil coupling mechanism(R-USCM) --- scoops3D --- Jiaohe --- non-aqueous phase liquid --- finite element method --- two-phase flow --- mixed-form formulation --- FLAC --- pore structure --- movable fluid --- tight sandstones --- Ordos Basin --- tectonically deformed coal --- coal and gas outburst --- coal-like material --- mechanical properties --- deformation feature --- adsorption/desorption properties --- minerals --- mechanical properties --- uniaxial compressive strength --- crack distribution characteristics --- discrete element method --- lignite --- nitric acid modification --- pore structure --- surface characteristics --- adsorption performance --- n/a

Listing 1 - 4 of 4
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (4)


License

CC by-nc-nd (4)


Language

english (3)

eng (1)


Year
From To Submit

2020 (1)

2019 (3)