Search results: Found 13

Listing 1 - 10 of 13 << page
of 2
>>
Sort by
Role of Fe-oxides for predicting phosphorus sorption in calcareous soils

Author:
Book Series: Karlsruher mineralogische und geochemische Hefte : Schriftenreihe des Instituts für Mineralogie und Geochemie ISSN: 16182677 ISBN: 9783866442412 Year: Volume: 34 Pages: XIII, 144 p. DOI: 10.5445/KSP/1000008093 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Astronomy (General)
Added to DOAB on : 2019-07-30 20:01:59
License:

Loading...
Export citation

Choose an application

Abstract

Agronomic efficiency and management of environmental P inputs can be improved by understanding soil-phosphorus interaction. Iron oxides and other clay minerals, P forms, and P sorption in young alluvial and weathered residual soils were determined. Phosphorus retention related to crystallinity and phase distribution of iron oxides. CBD and oxalate extractable iron and aluminum and smectite and kaolinite explained 90% variation while soil CaCO3 role was only insignificant in explaining P sorption.

Photovoltaic Materials and Electronic Devices

ISBN: 9783038422167 9783038422174 Year: Pages: XIV, 198 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Added to DOAB on : 2016-07-15 09:10:33
License:

Loading...
Export citation

Choose an application

Abstract

Given the state-of-the-art in solar photovoltaic (PV) technology and favorable financing terms, it is clear that PV has already obtained grid parity in specific locations [1]. Advances in the next generation of photovoltaic materials and photovoltaic devices can further reduce costs to enable all of humanity to utilize sustainable and renewable solar power [2]. This Special Issue of Materials will cover such materials, including modeling, synthesis, and evaluation of new materials and their solar cells.Specifically, this Special Issue will focus on five material technologies for advanced solar cells:1. New Concepts in PV Materials: Nanostructured materials, low-dimensional physics, multiple charge generation, up/down converters, thermophotovoltaics, low-cost III-V materials, bandgap engineering, hot-carrier effects, plasmonics, metamorphic materials, perovskite and related novel PV materials, novel light trapping, rectennas, quantum dots, carbon nanotubes, and graphene composites.2. Organic PV Materials: Polymer, hybrid and dye sensitized solar cells, high performance contacts, and lifetime degradation and mechanisms.3. Dye-Sensitized Solar Cells (DSSCs) Materials: Recent developments in dyes, working electrodes, technologies for device fabrications, and advances in new electrolytes.4. Amorphous, Nanostructured, and Thin Film Silicon PV Materials: Microstructure characterization, light induced degradation (SWE), large area and high deposition rates, novel processing routes, light trapping, multi-layers, and multi-junction devices.5. Passive Materials for all PV: Transparent conductive oxides (TCOs), encapsulation, connections, optics, glass, anti-reflection coatings (ARCs), alternative buffer layer materials, and contacts.

Multifunctional Oxide-Based Materials: From Synthesis to Application

Authors: ---
ISBN: 9783039213979 / 9783039213986 Year: Pages: 202 DOI: 10.3390/books978-3-03921-398-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Chemistry (General)
Added to DOAB on : 2019-12-09 11:49:15
License:

Growth and Ecosystem Services of Urban Trees

Author:
ISBN: 9783039215928 / 9783039215935 Year: Pages: 170 DOI: 10.3390/books978-3-03921-593-5 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Ecology
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

Numerous studies indicate an accelerated growth of forest trees, induced by ongoing climate change. Similar trends were recently found for urban trees in major cities worldwide. Studies frequently report about substantial effects of climate change and the urban heat island effect (UHI) on plant growth. The combined effects of increasing temperatures, changing precipitation patterns, and extended growing season lengths, in addition to increasing nitrogen deposition and higher CO2 concentrations, can increase but also reduce plant growth. Closely related to this, the multiple functions and services provided by urban trees may be modified. Urban trees generate numerous ecosystem services, including carbon storage, mitigation of the heat island effect, reduction of rainwater runoff, pollutant filtering, recreation effects, shading, and cooling. The quantity of the ecosystem services is often closely associated with the species, structure, age, and size of the tree as well as with a tree’s vitality. Therefore, greening cities, and particularly planting trees, seems to be an effective option to mitigate climate change and the UHI. The focus of this Special Issue is to underline the importance of trees as part of the urban green areas for major cities in all climate zones. Empirical as well as modeling studies of urban tree growth and their services and disservices in cities worldwide are included. Articles about the dynamics, structures, and functions of urban trees as well as the influence of climate and climate change on urban tree growth, urban species composition, carbon storage, and biodiversity are also discussed.

Thin Film Transistor

Author:
ISBN: 9783039215263 / 9783039215270 Year: Pages: 108 DOI: 10.3390/books978-3-03921-527-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Electrical and Nuclear Engineering
Added to DOAB on : 2019-12-09 16:10:12
License:

Loading...
Export citation

Choose an application

Abstract

Recently, new wide-band energy gap semiconductors can be grown by ALD, PLD, sputtering, or MOCVD. They have great potential for the fabrication and application to TFTs. Inorganic semiconductors have good stability against environmental degradation over their organic counterparts, whereas organic materials are usually flexible, transparent, and when solution-processed at low temperatures, are prone to degradation when exposed to heat, moisture, and oxygen. For this Special Issue, we invited researchers to submit papers discussing the development of new functional and smart materials, and inorganic as well as organic semiconductor materials, such as ZnO, InZnO, GaO, AlGaO, AnGaO, AlN/GaN, conducting polymers, molecular semiconductors, perovskite-based materials, carbon nanotubes, carbon nanotubes/polymer composites, and 2D materials (e.g., graphene, MoS2) and their potential applications in display drivers, radio frequency identification tags, e-paper, gas, chemical and biosensors, to name but a few.

Tribology and Surface Engineering

Author:
ISBN: 9783039280841 / 9783039280858 Year: Pages: 174 DOI: 10.3390/books978-3-03928-085-8 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering --- Technology (General)
Added to DOAB on : 2020-01-30 16:39:46
License:

Ceramic Conductors

Authors: ---
ISBN: 9783038979562 / 9783038979579 Year: Pages: 184 DOI: 10.3390/books978-3-03897-957-9 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Physics (General)
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

This Special Issue of Crystals contains papers focusing on various properties of conducting ceramics. Multiple aspects of both the research and application of this group of materials have been addressed. Conducting ceramics are the wide group of mostly oxide materials which play crucial roles in various technical applications, especially in the context of the harvesting and storage of energy. Without ion-conducting oxides, such as yttria-stabilized zirconia, doped ceria devices such as solid oxide fuel cells would not exist, not to mention the wide group of other ion conductors which can be applied in batteries or even electrolyzers, besides fuel cells. The works published in this Special Issue tackle experimental results as well as general theoretical trends in the field of ceramic conductors, or electroceramics, as it is often referred to.

Nanoparticle-Reinforced Polymers

Author:
ISBN: 9783039212835 / 9783039212842 Year: Pages: 334 DOI: 10.3390/books978-3-03921-284-2 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Chemistry (General)
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

This book, a collection of 12 original contributions and 4 reviews, provides a selection of the most recent advances in the preparation, characterization, and applications of polymeric nanocomposites comprising nanoparticles. The concept of nanoparticle-reinforced polymers came about three decades ago, following the outstanding discovery of fullerenes and carbon nanotubes. One of the main ideas behind this approach is to improve the matrix mechanical performance. The nanoparticles exhibit higher specific surface area, surface energy, and density compared to microparticles and, hence, lower nanofiller concentrations are needed to attain properties comparable to, or even better than, those obtained by conventional microfiller loadings, which facilitates processing and minimizes the increase in composite weight. The addition of nanoparticles into different polymer matrices opens up an important research area in the field of composite materials. Moreover, many different types of inorganic nanoparticles, such as quantum dots, metal oxides, and ceramic and metallic nanoparticles, have been incorporated into polymers for their application in a wide range of fields, ranging from medicine to photovoltaics, packaging, and structural applications.

Keywords

chemical and physical interface --- surface modification of silica --- latex compounding method --- silica/NR composite --- thermoresponsive hyperbranched polymer --- gold nanoparticles --- in-situ synthesis --- colorimetric sensor --- silver ions --- Ag nanoparticles --- catalysis --- composite membrane --- separation --- SiO2 microspheres --- inorganic nanotubes --- PHBV --- nanomaterials --- morphology --- crystallization kinetics --- nanocomposite --- conductive polymer --- solar cell --- graphene --- graphene oxide --- power-conversion efficiency --- electrode --- active layer --- interfacial layer --- layered structures --- polymer-matrix composites --- mechanical properties --- gas barrier properties --- N-isopropylacrylamide --- N-isopropylmethacrylamide --- ratiometric temperature sensing --- FRET --- chain topology --- selective adsorption --- polymer-NP interface --- organic light-emitting diodes (OLEDs) --- PFO/MEH-PPV hybrids --- SiO2/TiO2 nanocomposite --- optoelectronic properties --- fluorescent assay --- fluorescence resonance energy transfer --- conjugated polymer nanoparticles --- gold nanoparticles --- melamine --- polymers --- composites --- carbon nanoparticles --- nano-hybrids --- nanocomposites --- sol–gel --- in situ synthesis --- metal oxides --- reduced graphene oxide --- graphene-like WS2 --- bismaleimide --- mechanical properties --- carrier transport --- polypropylene nanocomposite --- molecular chain motion --- electrical breakdown --- electric energy storage --- thermoplastic nanocomposite --- polyethylene --- power cable insulation --- electrical property --- structure-property relationship --- hybrid hydrogels --- nanoparticles --- nanosheets --- clays --- polymers --- adhesion --- n/a

Catalysts Deactivation, Poisoning and Regeneration

Authors: ---
ISBN: 9783039215461 / 9783039215478 Year: Pages: 254 DOI: 10.3390/books978-3-03921-547-8 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- Chemical Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Catalyst lifetime represents one of the most crucial economic aspects in industrial catalytic processes, due to costly shutdowns, catalyst replacements, and proper disposal of spent materials. Not surprisingly, there is considerable motivation to understand and treat catalyst deactivation, poisoning, and regeneration, which causes this research topic to continue to grow. The complexity of catalyst poisoning obviously increases along with the increasing use of biomass/waste-derived/residual feedstocks and with requirements for cleaner and novel sustainable processes. This book collects 15 research papers providing insights into several scientific and technical aspects of catalyst poisoning and deactivation, proposing more tolerant catalyst formulations, and exploring possible regeneration strategies.

Keywords

hydrogenation --- copper --- catalyst --- water --- deactivation --- octanal --- octanol --- V2O5–WO3/TiO2 catalysts --- poisoning --- sulfur-containing sodium salts --- SO3 --- NO removal --- Cu/SSZ-13 --- NH3-SCR --- sodium ions --- deactivation mechanism --- sulfur poisoning --- coke deposition --- in situ regeneration --- Co-Zn/H-Beta --- NOx reduction by C3H8 --- catalyst deactivation --- diesel --- natural gas --- SEM --- TEM --- poisoning --- oxygen storage capacity --- thermal stability --- cyclic operation --- deactivation --- oxysulfate --- oxysulfide --- Selective Catalytic Reduction (SCR) --- SO2 poisoning --- Low-temperature catalyst --- nitrogen oxides --- nitrous oxide --- dry reforming of methane --- nickel catalysts --- barium carbonate --- deactivation by coking --- catalytic methane combustion --- exhaust gas --- catalyst durability --- Liquefied natural gas --- biogas --- vehicle emission control --- sulfur deactivation --- catalyst deactivation --- aluminum sulfate --- palladium sulfate --- regeneration --- phthalic anhydride --- vanadia-titania catalyst --- unusual deactivation --- physico-chemical characterization --- over-reduction --- vanadia species --- coke deposition --- DeNOx --- MW incinerator --- deactivation --- ammonium sulfates --- regeneration --- washing --- CO2 reforming --- Ni-catalyst --- syngas --- tetragonal zirconia --- phase stabilization --- CPO reactor --- effect of flow rate --- deactivation --- iso-octane --- Rh catalysts --- Rh --- homogeneous catalysis --- catalyst deactivation --- n/a

Thin Films for Energy Harvesting, Conversion, and Storage

Authors: --- ---
ISBN: 9783039217243 / 9783039217250 Year: Pages: 174 DOI: 10.3390/books978-3-03921-725-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- Chemical Engineering
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

Efficient clean energy harvesting, conversion, and storage technologies are of immense importance for the sustainable development of human society. To this end, scientists have made significant advances in recent years regarding new materials and devices for improving the energy conversion efficiency for photovoltaics, thermoelectric generation, photoelectrochemical/electrolytic hydrogen generation, and rechargeable metal ion batteries. The aim of this Special Issue is to provide a platform for research scientists and engineers in these areas to demonstrate and exchange their latest research findings. This thematic topic undoubtedly represents an extremely important technological direction, covering materials processing, characterization, simulation, and performance evaluation of thin films used in energy harvesting, conversion, and storage.

Listing 1 - 10 of 13 << page
of 2
>>
Sort by
Narrow your search