Search results: Found 5

Listing 1 - 5 of 5
Sort by
Observing Geohazards from Space

Author:
ISBN: 9783038427759 9783038427766 Year: Pages: VIII, 244 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Geology --- Earth Sciences --- Physics (General)
Added to DOAB on : 2018-04-27 16:24:07
License:

Loading...
Export citation

Choose an application

Abstract

With a wide spectrum of imaging capabilities, Earth observation offers several opportunities for the geoscience community to map and monitor natural and human-induced Earth hazards from space. The objective of this book is to collect scientific contributions on the development, validation, and implementation of satellite data, processing methods, and applications for mapping and monitoring of geohazards such as slow moving landslides, ground subsidence and uplift, and active and abandoned mining-related ground movements.The book includes research papers published in the Special Issue "Observing Geohazards from Space" of Geosciences, which provides a number of novel case studies demonstrating how Earth observation and remote sensing data can be used to detect and delineate land instability and geological hazards in different environmental contexts and using a range of spatial resolutions and image processing methods.

Novel Advances in Aquatic Vegetation Monitoring in Ocean, Lakes and Rivers

Author:
ISBN: 9783039212057 9783039212064 Year: Pages: 132 DOI: 10.3390/books978-3-03921-206-4 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Environmental Sciences
Added to DOAB on : 2019-12-09 16:10:12
License:

Loading...
Export citation

Choose an application

Abstract

In recent decades, there has been an increase in the development of strategies for water ecosystem mapping and monitoring. Overall, this is primarily due to legislative efforts to improve the quality of water bodies and oceans. Remote sensing has played a key role in the development of such approaches—from the use of drones for vegetation mapping to autonomous vessels for water quality monitoring. Within the specific context of vegetation characterization, the wide range of available observations—from satellite imagery to high-resolution drone aerial imagery—has enabled the development of monitoring and mapping strategies at multiple scales (e.g., micro- and mesoscales). This Special Issue, entitled “Novel Advances in Aquatic Vegetation Monitoring in Ocean, Lakes and Rivers”, collates recent advances in remote sensing-based methods applied to ocean, river, and lake vegetation characterization, including seaweed, kelp, submerged and emergent vegetation, and floating-leaf and free-floating plants. A total of six manuscripts have been compiled in this Special Issue, ranging from area mapping substrates in riverine environments to the identification of macroalgae in marine environments. The work presented leverages current state-of-the-art methods for aquatic vegetation monitoring and will spark further research within this field.

Marine Geomorphometry

Authors: --- ---
ISBN: 9783038979548 9783038979555 Year: Pages: 400 DOI: 10.3390/books978-3-03897-955-5 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-06-26 08:44:07
License:

Loading...
Export citation

Choose an application

Abstract

Geomorphometry is the science of quantitative terrain characterization and analysis, and has traditionally focused on the investigation of terrestrial and planetary landscapes. However, applications of marine geomorphometry have now moved beyond the simple adoption of techniques developed for terrestrial studies, driven by the rise in the acquisition of high-resolution seafloor data and by the availability of user-friendly spatial analytical tools. Considering that the seafloor represents 71% of the surface of our planet, this is an important step towards understanding the Earth in its entirety.This volume is the first one dedicated to marine applications of geomorphometry. It showcases studies addressing the five steps of geomorphometry: sampling a surface (e.g., the seafloor), generating a Digital Terrain Model (DTM) from samples, preprocessing the DTM for subsequent analyses (e.g., correcting for errors and artifacts), deriving terrain attributes and/or extracting terrain features from the DTM, and using and explaining those terrain attributes and features in a given context. Throughout these studies, authors address a range of challenges and issues associated with applying geomorphometric techniques to the complex marine environment, including issues related to spatial scale, data quality, and linking seafloor topography with physical, geological, biological, and ecological processes. As marine geomorphometry becomes increasingly recognized as a sub-discipline of geomorphometry, this volume brings together a collection of research articles that reflect the types of studies that are helping to chart the course for the future of marine geomorphometry.

Keywords

bedforms --- forage fish --- Pacific sand lance --- sediment habitats --- bathymetry --- currents --- seabed mapping --- marine geology --- submarine topography --- marine geomorphology --- terrain analysis --- multibeam echosounder --- bathymetry --- DEM --- satellite imagery --- multi beam echosounder --- filter --- geomorphology --- coral reefs --- Acoustic applications --- object segmentation --- seafloor --- underwater acoustics --- Cretaceous --- Cenomanian–Turonian --- paleobathymetry --- paleoclimate --- paleoceanography --- reconstruction --- simulation --- shelf-slope-rise --- geomorphometry --- GIS --- spatial scale --- spatial analysis --- terrain analysis --- seafloor geomorphometry --- domes --- volcanoes --- digital elevation models (DEMs) --- Canary Basin --- Atlantic Ocean --- cold-water coral --- carbonate mound --- habitat mapping --- spatial prediction --- image segmentation --- geographic object-based image analysis --- random forest --- accuracy --- confidence --- global bathymetry --- Seabed 2030 --- Nippon Foundation/GEBCO --- seafloor mapping technologies --- seafloor mapping standards and protocols --- benthic habitats --- shelf morphology --- eastern Brazilian shelf --- geomorphometry --- terrain analysis --- bathymetry --- surface roughness --- benthic habitat mapping --- python --- geomorphology --- submerged glacial bedforms --- deglaciation --- sedimentation --- multibeam --- acoustic-seismic profiling --- swath geometry --- multibeam spatial resolution --- integration artefacts --- Multibeam bathymetry --- benthic habitat mapping --- multiscale --- Random Forests --- pockmarks --- automated-mapping --- ArcGIS --- Glaciated Margin --- North Sea --- Malin Basin --- Barents Sea --- bathymetry --- thalwegs --- canyons --- Alaska --- Bering Sea --- multibeam sonar --- carbonate banks --- semi-automated mapping --- polychaete --- Northwestern Australia --- Oceanic Shoals Australian Marine Park --- Bonaparte Basin --- Timor Sea --- bathymetry --- digital terrain analysis --- geomorphometry --- geomorphology --- habitat mapping --- marine remote sensing

Learning to Understand Remote Sensing Images

Author:
ISBN: 9783038976844 9783038976851 Year: Volume: 1 Pages: 426 DOI: 10.3390/books978-3-03897-685-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Computer Science
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

With the recent advances in remote sensing technologies for Earth observation, many different remote sensors are collecting data with distinctive properties. The obtained data are so large and complex that analyzing them manually becomes impractical or even impossible. Therefore, understanding remote sensing images effectively, in connection with physics, has been the primary concern of the remote sensing research community in recent years. For this purpose, machine learning is thought to be a promising technique because it can make the system learn to improve itself. With this distinctive characteristic, the algorithms will be more adaptive, automatic, and intelligent. This book introduces some of the most challenging issues of machine learning in the field of remote sensing, and the latest advanced technologies developed for different applications. It integrates with multi-source/multi-temporal/multi-scale data, and mainly focuses on learning to understand remote sensing images. Particularly, it presents many more effective techniques based on the popular concepts of deep learning and big data to reach new heights of data understanding. Through reporting recent advances in the machine learning approaches towards analyzing and understanding remote sensing images, this book can help readers become more familiar with knowledge frontier and foster an increased interest in this field.

Keywords

hyperspectral image classification --- SELF --- SVMs --- Segment-Tree Filtering --- multi-sensor --- change feature analysis --- object-based --- multispectral images --- heterogeneous domain adaptation --- transfer learning --- multi-view canonical correlation analysis ensemble --- semi-supervised learning --- canonical correlation weighted voting --- ensemble learning --- image classification --- spatial attraction model (SAM) --- subpixel mapping (SPM) --- land cover --- mixed pixel --- spatial distribution --- hard classification --- building damage detection --- Fuzzy-GA decision making system --- machine learning techniques --- optical remotely sensed images --- sensitivity analysis --- texture analysis --- quality assessment --- ratio images --- Synthetic Aperture Radar (SAR) --- speckle --- speckle filters --- ice concentration --- SAR imagery --- convolutional neural network --- urban surface water extraction --- threshold stability --- sub-pixel --- linear spectral unmixing --- Landsat imagery --- image registration --- image fusion --- UAV --- metadata --- visible light and infrared integrated camera --- semantic segmentation --- CNN --- deep learning --- ISPRS --- remote sensing --- gate --- hyperspectral image --- sparse and low-rank graph --- tensor --- dimensionality reduction --- semantic labeling --- convolution neural network --- fully convolutional network --- sea-land segmentation --- ship detection --- hyperspectral image --- target detection --- multi-task learning --- sparse representation --- locality information --- remote sensing image correction --- color matching --- optimal transport --- CNN --- very high resolution images --- segmentation --- multi-scale clustering --- vehicle localization --- vehicle classification --- high resolution --- aerial image --- convolutional neural network (CNN) --- class imbalance --- deep learning --- convolutional neural network (CNN) --- fully convolutional network (FCN) --- classification --- remote sensing --- high resolution --- semantic segmentation --- deep convolutional neural networks --- manifold ranking --- single stream optimization --- high resolution image --- feature extraction --- hypergraph learning --- morphological profiles --- hyperedge weight estimation --- semantic labeling --- convolutional neural networks --- remote sensing --- deep learning --- aerial images --- hyperspectral image --- feature extraction --- dimensionality reduction --- optimized kernel minimum noise fraction (OKMNF) --- hyperspectral remote sensing --- endmember extraction --- multi-objective --- particle swarm optimization --- image alignment --- feature matching --- geostationary satellite remote sensing image --- GSHHG database --- Hough transform --- dictionary learning --- road detection --- Radon transform --- geo-referencing --- multi-sensor image matching --- Siamese neural network --- satellite images --- synthetic aperture radar --- inundation mapping --- flood --- optical sensors --- spatiotemporal context learning --- Modest AdaBoost --- HJ-1A/B CCD --- GF-4 PMS --- hyperspectral image classification --- automatic cluster number determination --- adaptive convolutional kernels --- hyperspectral imagery --- 1-dimensional (1-D) --- Convolutional Neural Network (CNN) --- Support Vector Machine (SVM) --- Random Forests (RF) --- machine learning --- deep learning --- TensorFlow --- multi-seasonal --- regional land cover --- saliency analysis --- remote sensing --- ROI detection --- hyperparameter sparse representation --- dictionary learning --- energy distribution optimizing --- multispectral imagery --- nonlinear classification --- kernel method --- dimensionality expansion --- deep convolutional neural networks --- road segmentation --- conditional random fields --- satellite images --- aerial images --- THEOS --- land cover change --- downscaling --- sub-pixel change detection --- machine learning --- MODIS --- Landsat --- very high resolution (VHR) satellite image --- topic modelling --- object-based image analysis --- image segmentation --- unsupervised classification --- multiscale representation --- GeoEye-1 --- wavelet transform --- fuzzy neural network --- remote sensing --- conservation --- urban heat island --- land surface temperature --- climate change --- land use --- land cover --- Landsat --- remote sensing --- SAR image --- despeckling --- dilated convolution --- skip connection --- residual learning --- scene classification --- saliency detection --- deep salient feature --- anti-noise transfer network --- DSFATN --- infrared image --- image registration --- MSER --- phase congruency --- hashing --- remote sensing image retrieval --- online learning --- hyperspectral image --- compressive sensing --- structured sparsity --- tensor sparse decomposition --- tensor low-rank approximation

Learning to Understand Remote Sensing Images

Author:
ISBN: 9783038976981 9783038976998 Year: Volume: 2 Pages: 376 DOI: 10.3390/books978-3-03897-699-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Computer Science
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

With the recent advances in remote sensing technologies for Earth observation, many different remote sensors are collecting data with distinctive properties. The obtained data are so large and complex that analyzing them manually becomes impractical or even impossible. Therefore, understanding remote sensing images effectively, in connection with physics, has been the primary concern of the remote sensing research community in recent years. For this purpose, machine learning is thought to be a promising technique because it can make the system learn to improve itself. With this distinctive characteristic, the algorithms will be more adaptive, automatic, and intelligent. This book introduces some of the most challenging issues of machine learning in the field of remote sensing, and the latest advanced technologies developed for different applications. It integrates with multi-source/multi-temporal/multi-scale data, and mainly focuses on learning to understand remote sensing images. Particularly, it presents many more effective techniques based on the popular concepts of deep learning and big data to reach new heights of data understanding. Through reporting recent advances in the machine learning approaches towards analyzing and understanding remote sensing images, this book can help readers become more familiar with knowledge frontier and foster an increased interest in this field.

Keywords

hyperspectral image classification --- SELF --- SVMs --- Segment-Tree Filtering --- multi-sensor --- change feature analysis --- object-based --- multispectral images --- heterogeneous domain adaptation --- transfer learning --- multi-view canonical correlation analysis ensemble --- semi-supervised learning --- canonical correlation weighted voting --- ensemble learning --- image classification --- spatial attraction model (SAM) --- subpixel mapping (SPM) --- land cover --- mixed pixel --- spatial distribution --- hard classification --- building damage detection --- Fuzzy-GA decision making system --- machine learning techniques --- optical remotely sensed images --- sensitivity analysis --- texture analysis --- quality assessment --- ratio images --- Synthetic Aperture Radar (SAR) --- speckle --- speckle filters --- ice concentration --- SAR imagery --- convolutional neural network --- urban surface water extraction --- threshold stability --- sub-pixel --- linear spectral unmixing --- Landsat imagery --- image registration --- image fusion --- UAV --- metadata --- visible light and infrared integrated camera --- semantic segmentation --- CNN --- deep learning --- ISPRS --- remote sensing --- gate --- hyperspectral image --- sparse and low-rank graph --- tensor --- dimensionality reduction --- semantic labeling --- convolution neural network --- fully convolutional network --- sea-land segmentation --- ship detection --- hyperspectral image --- target detection --- multi-task learning --- sparse representation --- locality information --- remote sensing image correction --- color matching --- optimal transport --- CNN --- very high resolution images --- segmentation --- multi-scale clustering --- vehicle localization --- vehicle classification --- high resolution --- aerial image --- convolutional neural network (CNN) --- class imbalance --- deep learning --- convolutional neural network (CNN) --- fully convolutional network (FCN) --- classification --- remote sensing --- high resolution --- semantic segmentation --- deep convolutional neural networks --- manifold ranking --- single stream optimization --- high resolution image --- feature extraction --- hypergraph learning --- morphological profiles --- hyperedge weight estimation --- semantic labeling --- convolutional neural networks --- remote sensing --- deep learning --- aerial images --- hyperspectral image --- feature extraction --- dimensionality reduction --- optimized kernel minimum noise fraction (OKMNF) --- hyperspectral remote sensing --- endmember extraction --- multi-objective --- particle swarm optimization --- image alignment --- feature matching --- geostationary satellite remote sensing image --- GSHHG database --- Hough transform --- dictionary learning --- road detection --- Radon transform --- geo-referencing --- multi-sensor image matching --- Siamese neural network --- satellite images --- synthetic aperture radar --- inundation mapping --- flood --- optical sensors --- spatiotemporal context learning --- Modest AdaBoost --- HJ-1A/B CCD --- GF-4 PMS --- hyperspectral image classification --- automatic cluster number determination --- adaptive convolutional kernels --- hyperspectral imagery --- 1-dimensional (1-D) --- Convolutional Neural Network (CNN) --- Support Vector Machine (SVM) --- Random Forests (RF) --- machine learning --- deep learning --- TensorFlow --- multi-seasonal --- regional land cover --- saliency analysis --- remote sensing --- ROI detection --- hyperparameter sparse representation --- dictionary learning --- energy distribution optimizing --- multispectral imagery --- nonlinear classification --- kernel method --- dimensionality expansion --- deep convolutional neural networks --- road segmentation --- conditional random fields --- satellite images --- aerial images --- THEOS --- land cover change --- downscaling --- sub-pixel change detection --- machine learning --- MODIS --- Landsat --- very high resolution (VHR) satellite image --- topic modelling --- object-based image analysis --- image segmentation --- unsupervised classification --- multiscale representation --- GeoEye-1 --- wavelet transform --- fuzzy neural network --- remote sensing --- conservation --- urban heat island --- land surface temperature --- climate change --- land use --- land cover --- Landsat --- remote sensing --- SAR image --- despeckling --- dilated convolution --- skip connection --- residual learning --- scene classification --- saliency detection --- deep salient feature --- anti-noise transfer network --- DSFATN --- infrared image --- image registration --- MSER --- phase congruency --- hashing --- remote sensing image retrieval --- online learning --- hyperspectral image --- compressive sensing --- structured sparsity --- tensor sparse decomposition --- tensor low-rank approximation

Listing 1 - 5 of 5
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (5)


License

CC by-nc-nd (5)


Language

english (5)


Year
From To Submit

2019 (4)

2018 (1)