Search results: Found 7

Listing 1 - 7 of 7
Sort by
Interlacing Self-Localization, Moving Object Tracking and Mapping for 3D Range Sensors

Author:
Book Series: Schriftenreihe / Institut für Mess- und Regelungstechnik, Karlsruher Institut für Technologie ISSN: 16134214 ISBN: 9783866449770 Year: Volume: 24 Pages: XVIII, 128 p. DOI: 10.5445/KSP/1000032359 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:01:57
License:

Loading...
Export citation

Choose an application

Abstract

This work presents a solution for autonomous vehicles to detect arbitrary moving traffic participants and to precisely determine the motion of the vehicle. The solution is based on three-dimensional images captured with modern range sensors like e.g. high-resolution laser scanners. As result, objects are tracked and a detailed 3D model is built for each object and for the static environment. The performance is demonstrated in challenging urban environments that contain many different objects.

Moving Object Detection and Segmentation for Remote Aerial Video Surveillance

Author:
Book Series: Karlsruher Schriften zur Anthropomatik / Lehrstuhl für Interaktive Echtzeitsysteme, Karlsruher Institut für Technologie ; Fraunhofer-Inst. für Optronik, Systemtechnik und Bildauswertung IOSB Karlsruhe ISSN: 18636489 ISBN: 9783731503200 Year: Volume: 18 Pages: XI, 215 p. DOI: 10.5445/KSP/1000044922 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Computer Science
Added to DOAB on : 2019-07-30 20:01:59
License:

Loading...
Export citation

Choose an application

Abstract

Unmanned Aerial Vehicles (UAVs) equipped with video cameras are a flexible support to ensure civil and military safety and security. In this thesis, a video processing chain is presented for moving object detection in aerial video surveillance. A Track-Before-Detect (TBD) algorithm is applied to detect motion that is independent of the camera motion. Novel robust and fast object detection and segmentation approaches improve the baseline TBD and outperform current state-of-the-art methods.

Machine Learning and Embedded Computing in Advanced Driver Assistance Systems (ADAS)

Authors: ---
ISBN: 9783039213757 9783039213764 Year: Pages: 344 DOI: 10.3390/books978-3-03921-376-4 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

This book contains the latest research on machine learning and embedded computing in advanced driver assistance systems (ADAS). It encompasses research in detection, tracking, LiDAR

Keywords

Vehicle-to-X communications --- Intelligent Transport Systems --- VANET --- DSRC --- Geobroadcast --- multi-sensor --- fusion --- deep learning --- LiDAR --- camera --- ADAS --- object tracking --- kernel based MIL algorithm --- Gaussian kernel --- adaptive classifier updating --- perception in challenging conditions --- obstacle detection and classification --- dynamic path-planning algorithms --- joystick --- two-wheeled --- terrestrial vehicle --- path planning --- infinity norm --- p-norm --- kinematic control --- navigation --- actuation systems --- maneuver algorithm --- automated driving --- cooperative systems --- communications --- interface --- automated-manual transition --- driver monitoring --- visual tracking --- discriminative correlation filter bank --- occlusion --- sub-region --- global region --- autonomous vehicles --- driving decision-making model --- the emergency situations --- red light-running behaviors --- ethical and legal factors --- T-S fuzzy neural network --- road lane detection --- map generation --- driving assistance --- autonomous driving --- real-time object detection --- autonomous driving assistance system --- urban object detector --- convolutional neural networks --- machine vision --- biological vision --- deep learning --- convolutional neural network --- Gabor convolution kernel --- recurrent neural network --- enhanced learning --- autonomous vehicle --- crash injury severity prediction --- support vector machine model --- emergency decisions --- relative speed --- total vehicle mass of the front vehicle --- perception in challenging conditions --- obstacle detection and classification --- dynamic path-planning algorithms --- drowsiness detection --- smart band --- electrocardiogram (ECG) --- photoplethysmogram (PPG) --- recurrence plot (RP) --- convolutional neural network (CNN) --- squeeze-and-excitation --- residual learning --- depthwise separable convolution --- blind spot detection --- machine learning --- neural networks --- predictive --- vehicle dynamics --- electric vehicles --- FPGA --- GPU --- parallel architectures --- optimization --- panoramic image dataset --- road scene --- object detection --- deep learning --- convolutional neural network --- driverless --- autopilot --- deep leaning --- object detection --- generative adversarial nets --- image inpainting --- n/a

Remote Sensing for Target Object Detection and Identification

Authors: --- ---
ISBN: 9783039283323 9783039283330 Year: Pages: 336 DOI: 10.3390/books978-3-03928-333-0 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Geography
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

Target object detection and identification are among the primary uses for a remote sensing system. This is crucial in several fields, including environmental and urban monitoring, hazard and disaster management, and defense and military. In recent years, these analyses have used the tremendous amount of data acquired by sensors mounted on satellite, airborne, and unmanned aerial vehicle (UAV) platforms. This book promotes papers exploiting different remote sensing data for target object detection and identification, such as synthetic aperture radar (SAR) imaging and multispectral and hyperspectral imaging. Several cutting-edge contributions, which provide examples of how to select of a technology or another depending on the specific application, will be detailed.

Keywords

anomaly detection --- hyperspectral imagery --- low-rank representation --- dictionary construction --- HSI reconstruction --- sparse coding --- adaptive weighting --- infrared small target detection --- local prior analysis --- nonconvex tensor robust principle component analysis --- partial sum of the tensor nuclear norm --- low rank sparse decomposition --- Lp-norm constraint --- non-convex optimization --- alternating direction method of multipliers --- infrared small target detection --- convolutional neural networks (CNNs) --- object detection --- remote sensing images --- contextual information --- part-based --- multi-model --- very-high-resolution (VHR) remote sensing imagery --- object detection --- multi-scale pyramidal features --- multi-scale strategies --- oil tank detection --- unsupervised saliency model --- Color Markov Chain --- bottom-up and top-down --- hazard prevention --- flood hazard --- hidden danger identification --- tower failure --- vehicle detection --- object matching --- superpixel segmentation --- unmanned aerial vehicle --- remote sensing imagery --- thermal infrared target tracking --- semantic features --- mask sparse representation --- particle filter framework --- ADMM --- satellite videos --- region proposals --- convolutional neural networks --- tiny and dim target detection --- component mixture model --- object detection --- remote sensing image --- deep learning --- convolutional neural networks (CNNs) --- hardware architecture --- processor --- ground-based detection --- infrared imaging --- observability --- detecting distance --- earth entry vehicle --- synthetic aperture radar (SAR) --- rivers water-flow elevation estimation --- pixel-tracking --- phase unwrapping --- infrared small-faint target detection --- non-independent and identical distribution (non-i.i.d.) mixture of Gaussians --- flux density --- variational Bayesian --- target detection --- target identification --- SAR --- visible --- infrared --- hyperspectral

Artificial Intelligence for Smart and Sustainable Energy Systems and Applications

Authors: ---
ISBN: 9783039288892 / 9783039288908 Year: Pages: 258 DOI: 10.3390/books978-3-03928-890-8 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Energy has been a crucial element for human beings and sustainable development. The issues of global warming and non-green energy have yet to be resolved. This book is a collection of twelve articles that provide strong evidence for the success of artificial intelligence deployment in energy research, particularly research devoted to non-intrusive load monitoring, network, and grid, as well as other emerging topics. The presented artificial intelligence algorithms may provide insight into how to apply similar approaches, subject to fine-tuning and customization, to other unexplored energy research. The ultimate goal is to fully apply artificial intelligence to the energy sector. This book may serve as a guide for professionals, researchers, and data scientists—namely, how to share opinions and exchange ideas so as to facilitate a better fusion of energy, academic, and industry research, and improve in the quality of people's daily life activities.

Machine Learning Techniques Applied to Geoscience Information System and Remote Sensing

Authors: ---
ISBN: 9783039212156 9783039212163 Year: Pages: 438 DOI: 10.3390/books978-3-03921-216-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Mechanical Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

As computer and space technologies have been developed, geoscience information systems (GIS) and remote sensing (RS) technologies, which deal with the geospatial information, have been rapidly maturing. Moreover, over the last few decades, machine learning techniques including artificial neural network (ANN), deep learning, decision tree, and support vector machine (SVM) have been successfully applied to geospatial science and engineering research fields. The machine learning techniques have been widely applied to GIS and RS research fields and have recently produced valuable results in the areas of geoscience, environment, natural hazards, and natural resources. This book is a collection representing novel contributions detailing machine learning techniques as applied to geoscience information systems and remote sensing.

Keywords

landslide --- bagging ensemble --- Logistic Model Trees --- GIS --- Vietnam --- colorization --- random forest regression --- grayscale aerial image --- change detection --- gully erosion --- environmental variables --- data mining techniques --- SCAI --- GIS --- mapping --- single-class data descriptors --- materia medica resource --- Panax notoginseng --- one-class classifiers --- geoherb --- change detection --- convolutional network --- deep learning --- panchromatic --- remote sensing --- remote sensing image segmentation --- convolutional neural networks --- Gaofen-2 --- hybrid structure convolutional neural networks --- winter wheat spatial distribution --- classification-based learning --- real-time precise point positioning --- convergence time --- ionospheric delay constraints --- precise weighting --- landslide --- weights of evidence --- logistic regression --- random forest --- hybrid model --- traffic CO --- traffic CO prediction --- neural networks --- GIS --- land use/land cover (LULC) --- unmanned aerial vehicle --- texture --- gray-level co-occurrence matrix --- machine learning --- crop --- landslide susceptibility --- random forest --- boosted regression tree --- information gain --- landslide susceptibility map --- ALS point cloud --- multi-scale --- classification --- large scene --- coarse particle --- particulate matter 10 (PM10) --- landsat image --- machine learning --- support vector machine --- high-resolution --- optical remote sensing --- object detection --- deep learning --- transfer learning --- land subsidence --- Bayes net --- naïve Bayes --- logistic --- multilayer perceptron --- logit boost --- change detection --- convolutional network --- deep learning --- panchromatic --- remote sensing --- leaf area index (LAI) --- machine learning --- Sentinel-2 --- sensitivity analysis --- training sample size --- spectral bands --- spatial sparse recovery --- constrained spatial smoothing --- spatial spline regression --- alternating direction method of multipliers --- landslide prediction --- machine learning --- neural networks --- model switching --- spatial predictive models --- predictive accuracy --- model assessment --- variable selection --- feature selection --- model validation --- spatial predictions --- reproducible research --- Qaidam Basin --- remote sensing --- TRMM --- artificial neural network --- n/a

Very High Resolution (VHR) Satellite Imagery: Processing and Applications

Authors: ---
ISBN: 9783039217564 9783039217571 Year: Pages: 262 DOI: 10.3390/books978-3-03921-757-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Environmental Engineering
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

Recently, growing interest in the use of remote sensing imagery has appeared to provide synoptic maps of water quality parameters in coastal and inner water ecosystems;, monitoring of complex land ecosystems for biodiversity conservation; precision agriculture for the management of soils, crops, and pests; urban planning; disaster monitoring, etc. However, for these maps to achieve their full potential, it is important to engage in periodic monitoring and analysis of multi-temporal changes. In this context, very high resolution (VHR) satellite-based optical, infrared, and radar imaging instruments provide reliable information to implement spatially-based conservation actions. Moreover, they enable observations of parameters of our environment at greater broader spatial and finer temporal scales than those allowed through field observation alone. In this sense, recent very high resolution satellite technologies and image processing algorithms present the opportunity to develop quantitative techniques that have the potential to improve upon traditional techniques in terms of cost, mapping fidelity, and objectivity. Typical applications include multi-temporal classification, recognition and tracking of specific patterns, multisensor data fusion, analysis of land/marine ecosystem processes and environment monitoring, etc. This book aims to collect new developments, methodologies, and applications of very high resolution satellite data for remote sensing. The works selected provide to the research community the most recent advances on all aspects of VHR satellite remote sensing.

Keywords

road extraction --- very high-resolution image --- fast marching method --- semiautomatic --- edge constraint --- beaver mimicry --- beaver dam analogue --- QuickBird --- riparian --- stream restoration --- Worldview --- benthic mapping --- seagrass --- airborne hypespectral imagery --- Worldview-2 --- atmospheric correction --- sunglint correction --- water column correction --- dimensionality reduction techniques --- SVM classification --- linear unmixing --- building detection --- built-up areas extraction --- local feature points --- saliency index --- morphological building index --- Deformable CNN --- Faster R-CNN --- data augmentation --- occluded object detection --- very high-resolution Pléiades imagery --- canopy height model --- acquisition geometry --- forested mountain --- accuracy assessment --- remote sensing imagery --- super-resolution --- ultra-dense connection --- feature distillation --- video satellite --- compensation unit --- urban water mapping --- water index --- shadow detection --- threshold stability --- agriculture parcel segmentation --- superpixels --- consensus --- texture analysis --- multi-resolution segmentation (MRS) --- greenhouse extraction --- over-segmentation index (OSI) --- under-segmentation index (USI) --- error index of total area (ETA) --- composite error index (CEI) --- GaoFen-2 (GF-2) --- synthetic aperture radar --- landslide monitoring --- sub-pixel offset tracking --- Slumgullion landslide --- natural hazards --- large displacements --- remote sensing --- scene classification --- CNN --- capsule --- PrimaryCaps --- CapsNet --- High-resolution satellite imagery --- submesoscale --- spiral eddy --- cyanobacteria --- surface convergence --- western Baltic Sea

Listing 1 - 7 of 7
Sort by
Narrow your search