Search results: Found 2

Listing 1 - 2 of 2
Sort by
Redox and Metabolic Circuits in Cancer

Authors: --- --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889456352 Year: Pages: 183 DOI: 10.3389/978-2-88945-635-2 Language: English
Publisher: Frontiers Media SA
Subject: Medicine (General) --- Oncology
Added to DOAB on : 2019-01-23 14:53:43
License:

Loading...
Export citation

Choose an application

Abstract

Living cells require a constant supply of energy for the orchestration of a variety of biological processes in fluctuating environmental conditions. In heterotrophic organisms, energy mainly derives from the oxidation of carbohydrates and lipids, whose chemical bonds breakdown allows electrons to generate ATP and to provide reducing equivalents needed to restore the antioxidant systems and prevent from damage induced by reactive oxygen and nitric oxide (NO)-derived species (ROS and RNS). Studies of the last two decades have highlighted that cancer cells reprogram the metabolic circuitries in order to sustain their high growth rate, invade other tissues, and escape death. Therefore, this broad metabolic reorganization is mandatory for neoplastic growth, allowing the generation of adequate amounts of ATP and metabolites, as well as the optimization of redox homeostasis in the changeable environmental conditions of the tumor mass. Among these, ROS, as well as NO and RNS, which are produced at high extent in the tumor microenvironment or intracellularly, have been demonstrated acting as positive modulators of cell growth and frequently associated with malignant phenotype. Metabolic changes are also emerging as primary drivers of neoplastic onset and growth, and alterations of mitochondrial metabolism and homeostasis are emerging as pivotal in driving tumorigenesis.Targeting the metabolic rewiring, as well as affecting the balance between production and scavenging of ROS and NO-derived species, which underpin cancer growth, opens the possibility of finding selective and effective anti-neoplastic approaches, and new compounds affecting metabolic and/or redox adaptation of cancer cells are emerging as promising chemotherapeutic tools.In this Research Topic we have elaborated on all these aspects and provided our contribution to this increasingly growing field of research with new results, opinions and general overviews about the extraordinary plasticity of cancer cells to change metabolism and redox homeostasis in order to overcome the adverse conditions and sustain their “individualistic” behavior under a teleonomic viewpoint.

Thioredoxin and Glutaredoxin Systems

Authors: ---
ISBN: 9783038978367 / 9783038978374 Year: Pages: 280 DOI: 10.3390/books978-3-03897-837-4 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

This Special Issue features recent data concerning thioredoxins and glutaredoxins from various biological systems, including bacteria, mammals, and plants. Four of the sixteen articles are review papers that deal with the regulation of development of the effect of hydrogen peroxide and the interactions between oxidants and reductants, the description of methionine sulfoxide reductases, detoxification enzymes that require thioredoxin or glutaredoxin, and the response of plants to cold stress, respectively. This is followed by eleven research articles that focus on a reductant of thioredoxin in bacteria, a thioredoxin reductase, and a variety of plant and bacterial thioredoxins, including the m, f, o, and h isoforms and their targets. Various parameters are studied, including genetic, structural, and physiological properties of these systems. The redox regulation of monodehydroascorbate reductase, aminolevulinic acid dehydratase, and cytosolic isocitrate dehydrogenase could have very important consequences in plant metabolism. Also, the properties of the mitochondrial o-type thioredoxins and their unexpected capacity to bind iron–sulfur center (ISC) structures open new developments concerning the redox mitochondrial function and possibly ISC assembly in mitochondria. The final paper discusses interesting biotechnological applications of thioredoxin for breadmaking.

Keywords

methionine --- methionine sulfoxide --- methionine sulfoxide reductase --- physiological function --- protein --- plant --- repair --- redox homeostasis --- signaling --- stress --- mitochondria --- thioredoxin --- iron–sulfur cluster --- redox regulation --- ALAD --- tetrapyrrole biosynthesis --- redox control --- thioredoxins --- posttranslational modification --- chlorophyll --- redox regulation --- thioredoxin --- ferredoxin-thioredoxin reductase --- chloroplast --- H2O2 --- redox signalling --- development --- regeneration --- adult stem cells --- metazoan --- cyanobacteria --- thioredoxin --- photosynthesis --- redox active site --- thioredoxin --- disulfide --- flavin --- NADPH --- X-ray crystallography --- SAXS --- methanoarchaea --- chilling stress --- cold temperature --- posttranslational modification --- regulation --- ROS --- thiol redox network --- thioredoxin --- thioredoxin --- Calvin-Benson cycle --- photosynthesis --- carbon fixation --- chloroplast --- macromolecular crystallography --- protein-protein recognition --- electrostatic surface --- Chlamydomonas reinhardtii --- thioredoxin --- glutaredoxin --- legume plant --- symbiosis --- redox homeostasis --- stress --- thioredoxin --- monodehydroascorbate reductase --- water stress --- protein oxidation --- antioxidants --- ascorbate --- glutathione --- wheat --- thioredoxin --- thioredoxin reductase --- baking --- redox --- dough rheology --- protein oxidation --- methionine oxidation --- methionine sulfoxide reductases --- oxidized protein repair --- ageing --- Chlamydomonas reinhardtii --- cysteine alkylation --- cysteine reactivity --- MALDI-TOF mass spectrometry --- thioredoxin --- X-ray crystallography --- Isocitrate dehydrogenase --- glutathionylation --- nitrosylation --- glutaredoxin --- Arabidopsis thaliana --- thioredoxins --- plastidial --- specificity --- function --- proteomic --- photosynthesis --- Calvin cycle --- n/a

Listing 1 - 2 of 2
Sort by
Narrow your search