Search results: Found 2

Listing 1 - 2 of 2
Sort by
Crosstalk between the osteogenic and neurogenic stem cell niches: how far are they from each other?

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889197774 Year: Pages: 102 DOI: 10.3389/978-2-88919-777-4 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2016-04-07 11:22:02
License:

Loading...
Export citation

Choose an application

Abstract

Somatic stem cells reside in definite compartments, known as “niches”, within developed organs and tissues, being able to renew themselves, differentiate and ensure tissue maintenance and repair. In contrast with the original dogmatic distinction between renewing and non-renewing tissues, somatic stem cells have been found in almost every human organ, including brain and heart. The adult bone marrow, in particular, houses a complex multifunctional niche comprising hemopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs), that intensely interact. HSCs represent the common precursors of all mature blood cells. MSCs are instead able to differentiate along multiple mesodermal lineages and are believed to represent the key somatic stem cell within the skeletogenic niche, being conceptually able to produce any tissue included within a mature skeletal segment (bone, cartilage, blood vessels, adipose tissue, and supporting connective stroma). Despite this high plasticity, the claim that MSCs could be capable of transdifferentiation along non-mesodermal lineages, including neurons, has been strongly argued. Adult osteogenic and neurogenic niches display wide differences: embryo origin, microenvironment, progenitors’ lifespan, lineages of supporting cells. Although similar pathways may be involved, it is hard to believe that the osteogenic and neurogenic lineages can share functional features. The outbreaking research achievements in the field of regenerative medicine, along with the pressing need for effective innovative tools for the treatment of neurodegeneration and neurologic disorders, have been forcing experimental clinical applications, which, despite their scientific weakness, have recently stimulated the public opinion. Based on this contemporary background, this Research Topic wish to provide an in-depth revision of the state of the art on relevant scientific milestones addressing the differences and possible interconnections and overlaps, between the osteogenic and the neurogenic niches. Dissertations on both basic research and clinical aspects, along with ethical and regulatory issues on the use of somatic stem cells for in vivo transplantation, have been covered.

Pheochromocytoma (PHEO) and Paraganglioma (PGL)

Authors: ---
ISBN: 9783039216543 / 9783039216550 Year: Pages: 380 DOI: 10.3390/books978-3-03921-655-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General)
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

This book outlines some new advances in genetics, clinical evaluation, localization, therapy (newly including immunotherapy) of pheochromocytoma and paraganglioma including their metastatic counterparts. Well-known and experienced clinicians and scientists contributed to this book to include some novel approaches to these tumors. This book will serve to various health care professionals from different subspecialties, but mainly oncologists, endocrinologists, endocrine surgeons, pediatricians, and radiologists. This book shows that the field of pheochromocytoma/paraganglioma is evolving and a significant progress has been made in last 5 years requiring that health care professionals and scientists will learns new information and implement it in their clinical practice or scientific work, respectively. This book should not be missed by anybody who is focusing on neuroendocrine tumors, their newest evaluation and treatment.

Keywords

pheochromocytoma --- paraganglioma --- adrenocortical carcinoma --- adrenal tumor --- pan-cancer analysis --- neural crest --- neuroendocrine --- paraganglioma --- head and neck --- radiotherapy --- 18F-FDOPA --- PET --- GTV --- SDHB --- SDHD --- mortality --- paraganglioma --- pheochromocytoma --- radiofrequency ablation --- cryoablation --- percutaneous ethanol injection --- neuroendocrine tumor --- minimally invasive procedure --- percutaneous ablation --- PASS --- GAPP --- histology --- meta-analysis --- paraganglioma --- pheochromocytoma --- carotid body --- angiogenesis --- mitochondria --- neural crest --- neurogenesis --- paraganglioma --- stem-like tumor cells --- vasculogenesis --- xenograft --- pheochromocytoma --- catecholamine --- global longitudinal strain --- speckle-tracking echocardiography --- subclinical systolic dysfunction --- pheochromocytoma --- paraganglioma --- neuroendocrine tumor --- targeted therapy --- therapy resistance --- FGF21 --- pheochromocytoma --- paraganglioma --- diabetes mellitus --- obesity --- energy metabolism --- calorimetry --- chromogranin A --- metanephrines --- pheochromocytoma --- paraganglioma --- hypoxia --- pseudohypoxia --- spheroids --- HIF --- EPAS1 --- catecholamine --- pheochromocytoma and paraganglioma --- phosphorylation tyrosine hydroxylase --- dog --- pheochromocytoma --- paraganglioma --- SDHB --- SDHD --- mutation --- chromosomal alteration --- comparative genomics --- pheochromocytoma --- paraganglioma --- metastatic --- immunotherapy --- innate immunity --- adaptive immunity --- toll-like receptor --- pathogen-associated molecular patterns --- neutrophil --- T cell --- pheochromocytoma --- paraganglioma --- hypertension --- blood pressure variability --- average real variability --- weighted standard deviation --- paraganglioma --- somatostatinoma --- polycythemia --- EPAS1 --- transgenic mice --- erythropoietin --- pheochromocytoma --- paraganglioma --- TCA cycle --- germline mutation --- metastatic OR malignant pheochromocytoma --- paraganglioma --- ectopic secretion --- lL-6 --- normetanephrines --- VHL --- NF1 --- EPAS1 --- hypoxia-inducible factor --- inflammation --- radiosensitization --- succinate dehydrogenase --- mouse pheochromocytoma cells --- immunohistochemistry --- fluorescence imaging --- pheochromocytoma --- paraganglioma --- next-generation sequencing --- sporadic --- hereditary --- CNV detection --- pheochromocytoma --- paraganglioma --- PET-CT --- 11C-hydroxy-ephedrine --- adrenal incidentaloma --- pheochromocytoma --- paraganglioma --- 177Lu-DOTATATE --- peptide receptor radiotherapy --- PRRT --- neuroendocrine tumor --- NET --- PCC --- PGL --- postoperative --- pheochromocytoma --- hypertension --- hypotension --- arrhythmia --- PPGL --- catecholamines --- adrenomedullary function --- n/a

Listing 1 - 2 of 2
Sort by
Narrow your search
-->