Search results: Found 6

Listing 1 - 6 of 6
Sort by
Recent Developments of Nanofluids

Author:
ISBN: 9783038428336 9783038428343 Year: Pages: VIII, 150 Language: Englisch
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Mathematics --- Physics (General) --- Chemistry (General)
Added to DOAB on : 2018-08-24 15:50:37
License:

Loading...
Export citation

Choose an application

Abstract

Over the past two decades, there has been increased attention in the research of nanofluid due to its widely expanded domain in many industrial and technological applications. Major advances in the modeling of key topics such as nanofluid, MHD, heat transfer, convection, porous media, Newtonian/non-Newtonian fluids have been made and finally published in the special issue on recent developments in nanofluids for Applied Sciences. The present attempt is to edit the special issue in a book form. Although, this book is not a formal textbook even than it will definitely be useful for research students and university teachers in overcoming the difficulties occurring in the said topic while dealing with the nonlinear governing equations. On one side the real world problems in mathematics, physics, biomechanics, engineering and other disciplines of sciences are mostly described by the set of nonlinear equations whereas on the other hand, it is often more difficult to get an analytic solution or even a numerical one. This book has successfully handled this challenging job with latest techniques. In addition the findings of the simulation are logically realistic and meet the standard of sufficient scientific value.

Solar Energy Applications in Houses, Smart Cities and Microgrids

Author:
ISBN: 9783039280681 9783039280698 Year: Pages: 96 DOI: 10.3390/books978-3-03928-069-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering --- Technology (General)
Added to DOAB on : 2020-01-30 16:39:46
License:

Loading...
Export citation

Choose an application

Abstract

Five papers were selected for this Special Issue, with three relating to solar energy applications in houses, smart cities, and microgrids; one studying the relationship between the smart city model and the concept of energy sustainability; and one addressing the following two topics: the lack of effectiveness of detection algorithms based on the voltage/frequency displacement concept under voltage-controlled inverters and the applicability limits of others based on the impedance measurement (IM).

Symmetry and Fluid Mechanics

Author:
ISBN: 9783039284269 9783039284276 Year: Pages: 446 DOI: 10.3390/books978-3-03928-427-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

Since the 1980s, attention has increased in the research of fluid mechanics due to its wide application in industry and phycology. Major advances have occurred in the modeling of key topics such Newtonian and non-Newtonian fluids, nanoparticles, thermal management, and physiological fluid phenomena in biological systems, which have been published in this Special Issue on symmetry and fluid mechanics for Symmetry. Although, this book is not a formal textbook, it will be useful for university teachers, research students, and industrial researchers and for overcoming the difficulties that occur when considering the nonlinear governing equations. For such types of equations, obtaining an analytic or even a numerical solution is often more difficult. This book addresses this challenging job by outlining the latest techniques. In addition, the findings of the simulation are logically realistic and meet the standard of sufficient scientific value.

Keywords

stagnation point flow --- numerical solution --- magnetic field --- nanofuid --- unsteady rotating flow --- porous medium --- aqueous suspensions of CNT’s --- nonlinear thermal radiation --- viscous dissipation effect --- HAM --- chemical reaction --- activation energy --- peristalsis --- couple stress fluid --- nanoparticle --- Keller-box method --- Newtonian heating --- nonlinear thermal radiation --- nonlinear stretching cylinder --- homogeneous/heterogeneous reactions --- nanofluid --- steady laminar flow --- nanofluid --- heat source/sink --- magnetic field --- stretching sheet --- SWCNT/MWCNT nanofluid --- thin needle --- classical and fractional order problems --- APCM technique --- SWCNTs --- MWCNTs --- stretched surface --- rotating system --- nanofluid --- MHD --- thermal radiation --- HAM --- nonlinear hydroelastic waves --- uniform current --- thin elastic plate --- solitary waves --- PLK method --- Permeable walls --- suction/injection --- nanofluids --- porous medium --- mixed convection --- magnetohydrodynamic (MHD) --- dual solution --- stability analysis --- Darcy Forchheimer model --- nanofluid --- exponential sheet --- Jeffrey fluid --- laminar g-Jitter flow --- inclined stretching sheet --- heat source/sink --- Magnetohydrodynamic (MHD) --- Jefferey, Maxwell and Oldroyd-B fluids --- Cattaneo–Christov heat flux --- homogeneous–heterogeneous reactions --- analytical technique --- Numerical technique --- viscous fluid --- Caputo–Fabrizio time-fractional derivative --- Laplace and Fourier transformations --- side walls --- oscillating shear stress --- forced convection --- microducts --- Knudsen number --- Nusselt number --- artificial neural networks --- particle swarm optimization --- Casson fluid --- chemical reaction --- cylinder --- heat generation --- magnetohydrodynamic (MHD) --- slip --- Carreau fluid --- Cattaneo–Christov heat flux model --- convective heat boundary condition --- temperature dependent thermal conductivity --- homogeneous-heterogeneous reactions --- integer and non-integer order derivatives --- GO-W/GO-EG nanofluids --- Marangoni convection --- FDE-12 numerical method --- couple stress fluid --- Hafnium particles --- Couette–Poiseuille flow --- shooting method --- magnetic field --- Darcy–Brinkman porous medium --- viscous dissipation --- slip conditions --- porous dissipation --- permeable sheet --- stretchable rotating disk --- CNTs (MWCNTs and SWCNTs) --- velocity slip --- convective boundary condition --- OHAM --- Casson fluid model --- rotating rigid disk --- nanoparticles --- Magnetohydrodynamics (MHD) --- Oil/MWCNT nanofluid --- heat transfer --- finite volume method --- laminar flow --- slip coefficient --- microchannel --- arched surface --- nonlinear thermal radiation --- molecular diameter --- Al2O3 nanoparticles --- streamlines --- isotherms --- RK scheme --- peristaltic transport --- tapered channel --- porous medium --- smart pumping for hemodialysis --- thermal radiation --- compressible viscous flow --- symmetric linear equations --- generalized finite difference scheme --- kernel gradient free --- Lagrangian approach --- Newtonian and non-Newtonian fluids --- nanofluids and particle shape effects --- convective heat and mass transfer --- steady and unsteady flow problems --- multiphase flow simulations --- fractional order differential equations --- thermodynamics --- physiological fluid phenomena in biological systems

Multi-Walled Carbon Nanotubes

Author:
ISBN: 9783039212293 9783039212309 Year: Pages: 184 DOI: 10.3390/books978-3-03921-230-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- Chemical Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

Since their discovery, multi-walled carbon nanotubes (MWCNTs) have received tremendous attention due to their unique electrical, optical, physical, chemical, and mechanical properties. Remarkable advances have been made in the synthesis, purification, structural characterization, functionalization, and application of MWCNTs. Their particular characteristics make them well suited for a plethora of applications in a number of fields, namely nanoelectronics, nanofluids, energy management, (electro)catalysis, materials science, construction of (bio)sensors based on different detection schemes, multifunctional nanoprobes for biomedical imaging, and sorbents for sample preparation or removal of contaminants from wastewater. They are also useful as anti-bacterial agents, drug delivery nanocarriers, etc. The current relevant application areas are countless. This Special Issue presents original research and review articles that address advances, trends, challenges, and future perspectives regarding synthetic routes, structural features, properties, behaviors, and industrial or scientific applications of MWCNTs in established and emerging areas.

Keywords

water based nanofluid --- carbon-nanotubes --- boundary layer --- heat generation --- thermal radiation --- curved stretching sheet --- numerical solution --- Single-Walled Carbon Nanotube (SWCNT) --- Multi-Walled Carbon Nanotube (MWCNT) --- MHD --- Casson model --- stretching sheet --- non-linear thermal radiation --- HAM --- zeolitic imidazolate framework --- multi-walled carbon nanotubes --- magnetic solid phase extraction --- organochlorine pesticides --- agricultural irrigation water --- Pd-CNT nanohybrids --- functionalized CNTs --- polarity --- semi-homogeneous catalysis --- heck reaction --- nanomaterials --- multi-walled carbon nanotubes --- synthesis methods --- electrochemical properties --- electrochemical sensors --- electroanalysis --- sensing applications --- multiwalled carbon nanotubes --- gold(I) --- gold(III) --- adsorption --- elution --- gold nanoparticles --- adsorption --- multi-walled carbon nanotubes --- nonylphenol --- kinetics --- multi-walled carbon nanotubes --- graphene oxide --- cerium oxide --- lubricating oil additives --- multi-wall carbon nanotube (MWCNT) --- azide-alkyne click chemistry --- RAFT polymerization --- PMMA --- carbon nanotubes --- composites --- radar absorbing materials --- complex permittivity --- chloride diffusion --- cement mortars --- carbon nanotubes --- mechanical properties --- electrical properties --- hydrophobic drugs --- drug delivery --- functionalized carbon nanotubes --- dissolution rate --- nanomedicine --- polymeric composites --- silicone rubber --- Ionic liquid --- carbon materials --- structural --- EMI shielding --- n/a

Numerical Analysis or Numerical Method in Symmetry

Author:
ISBN: 9783039283729 9783039283736 Year: Pages: 194 DOI: 10.3390/books978-3-03928-373-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Mathematics
Added to DOAB on : 2020-04-07 23:07:08
License:

Loading...
Export citation

Choose an application

Abstract

This Special Issue focuses mainly on techniques and the relative formalism typical of numerical methods and therefore of numerical analysis, more generally. These fields of study of mathematics represent an important field of investigation both in the field of applied mathematics and even more exquisitely in the pure research of the theory of approximation and the study of polynomial relations as well as in the analysis of the solutions of the differential equations both ordinary and partial derivatives. Therefore, a substantial part of research on the topic of numerical analysis cannot exclude the fundamental role played by approximation theory and some of the tools used to develop this research. In this Special Issue, we want to draw attention to the mathematical methods used in numerical analysis, such as special functions, orthogonal polynomials, and their theoretical tools, such as Lie algebra, to study the concepts and properties of some special and advanced methods, which are useful in the description of solutions of linear and nonlinear differential equations. A further field of investigation is dedicated to the theory and related properties of fractional calculus with its adequate application to numerical methods.

Keywords

risk assessment --- numerical analysis --- ignition hazard --- effective field strength --- offshore plant --- Hamiltonian system --- complex Lagrangian --- Noether symmetries --- first integrals --- symplectic Runge–Kutta methods --- effective order --- partitioned runge-kutta methods --- symplecticity --- hamiltonian systems --- Runge-Kutta type methods --- fourth-order ODEs --- order conditions --- B-series --- quad-colored trees --- k-hypergeometric differential equations --- non-homogeneous --- k-hypergeometric series --- special function --- general solution --- Frobenius method --- Chebyshev polynomials --- pseudo-Chebyshev polynomials --- recurrence relations --- differential equations --- composition properties --- orthogonality properties --- numerical analysis --- heat generation --- chemical reaction --- thin needle --- nanofluid --- fourth-order --- nonoscillatory solutions --- oscillatory solutions --- delay differential equations --- particle accelerator --- coupling impedance --- dual integral equations --- Clenshaw-Curtis quadrature --- steepest descent method --- logarithmic singularities --- Cauchy singularity --- highly oscillatory integrals --- second-order --- nonoscillatory solutions --- oscillatory solutions --- delay differential equations --- Fredholm integral equations --- multiresolution analysis --- unitary extension principle --- oblique extension principle --- B-splines --- wavelets --- tight framelets --- Swift–Hohenberg type of equation --- surfaces --- narrow band domain --- closest point method --- operator splitting method

Selected Problems in Fluid Flow and Heat Transfer

Author:
ISBN: 9783039214273 9783039214280 Year: Pages: 460 DOI: 10.3390/books978-3-03921-428-0 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Fluid flow and heat transfer processes play an important role in many areas of science and engineering, from the planetary scale (e.g., influencing weather and climate) to the microscopic scales of enhancing heat transfer by the use of nanofluids; understood in the broadest possible sense, they also underpin the performance of many energy systems. This topical Special Issue of Energies is dedicated to the recent advances in this very broad field. This book will be of interest to readers not only in the fields of mechanical, aerospace, chemical, process and petroleum, energy, earth, civil ,and flow instrumentation engineering but, equally, biological and medical sciences, as well as physics and mathematics; that is, anywhere that “fluid flow and heat transfer” phenomena may play an important role or be a subject of worthy research pursuits.

Keywords

performance characteristics --- Positive Temperature Coefficient (PTC) elements --- heat transfer --- thermal performance --- Computational Fluid Dynamics (CFD) simulation --- air heater --- impingement heat transfer enhancement --- orthogonal jet --- turbulence --- flat plate --- Colebrook equation --- Colebrook-White --- flow friction --- iterative procedure --- logarithms --- Padé polynomials --- hydraulic resistances --- turbulent flow --- pipes --- computational burden --- thermodynamic --- numerical simulation --- thermal effect --- axial piston pumps --- microbubble pump --- bubble generation --- pump efficiency --- bubble size --- concentration --- particle counter --- flow-induced motion --- sharp sections --- T-section prism --- load resistances --- section aspect ratios --- energy conversion --- thermosyphon --- phase change --- two-phase flow --- visualization --- superheated steam --- triaxial stress --- thermogravimetry --- X-ray microtomography --- thermal cracking --- microbubbles --- fluidics --- flow oscillation --- oscillators --- energetics --- pressure loss --- pressure drop --- friction factor --- multiphase flow --- flow rate --- flow regime --- POD --- entropy generation --- boundary layer --- laminar separation bubble --- two-phase flow --- pump performance --- computational fluid dynamics --- centrifugal pump --- flow behavior --- magnetic field --- ferrofluid --- porous cavity --- heat transfer --- mass transfer --- numerical modeling --- numerical modeling --- surrogate model --- correlation --- fin-tube --- spiral fin-tube --- CFD --- ( A g ? F e 3 O 4 / H 2 O ) hybrid nanofluid --- nonlinear thermal radiation --- heat transfer --- chemical reaction --- mass transfer --- method of moment --- numerical results --- transient analysis --- pumps --- moment of inertia --- water hammer --- pipe flow --- wind turbine --- downwind --- tower shadow --- load --- tower --- BEM --- actuator disc --- CANDU-6 --- PHWR --- moderator --- turbulence --- OpenFOAM --- printed circuit heat exchanger --- supercritical LNG --- zigzag type --- heat transfer performance --- gas turbine engine --- particle deposition --- capture efficiency --- multiphase flow --- tip leakage flow --- detached-eddy simulation --- vortex breakdown --- transonic compressor --- POD --- tip leakage flow --- decomposition region --- decomposition dimensionalities --- vortex identification --- SPIV --- fire-spreading characteristics --- real vehicle experiments --- toxic gases --- temperature distributions --- unsteady heat release rate --- thermal energy recovery --- flue gas --- dew point temperature --- condensation --- Aspen® --- thermoacoustic electricity generator --- multi-stage --- traveling-wave heat engine --- push-pull --- inertance-compliance --- acoustic streaming --- n/a

Listing 1 - 6 of 6
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (6)


License

CC by-nc-nd (6)


Language

english (5)

englisch (1)


Year
From To Submit

2020 (3)

2019 (2)

2018 (1)