Search results: Found 3

Listing 1 - 3 of 3
Sort by
Current Strategies to Improve the Nutritional and Physical Quality of Baked Goods

Authors: ---
ISBN: 9783039283460 9783039283477 Year: Pages: 164 DOI: 10.3390/books978-3-03928-347-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Nutrition and Food Sciences --- Biology --- Science (General)
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

The lifestyle of humans is rapidly changing, and, correspondingly, their needs and the current and future megatrends of the food market. It is worth mentioning (1) the preference for natural, simple, and flexible diets that drive the further expansion of plant-focused formulations, (2) the focus on food sustainability (food waste reduction), and (3) the interest in healthy eating as the basis for good health. The hectic routine and rapid urbanization in developed and developing regions, respectively, have shifted consumer preferences toward bread and baked foods, which, interestingly, are often high in sugars and are categorized as having a high glycemic index. Therefore, it is of major importance to address the technological challenges of manufacturing baked goods with high physical and sensory quality that result in positive metabolic responses. This Special Issue seeks to provide fundamental understanding in this area and novel strategies to improve the nutritional properties of baked goods, including a decrease in starch bioaccessibility, sugar reduction, increase in fiber and/or protein content, and the improvement of phytochemical bioactivity. This Special Issue will also cover studies on the physical and sensory improvements of baked goods that may provide a mechanistic understanding to minimize the loss of quality after the incorporation of nutritional-improving ingredients, such as edible byproducts, proteins, or fibers. Last but not least, studies focused on the reduction of additives (clean label) or fat and on the use of sourdough to improve the sensory properties of baked goods will also be included.

Advances in Food and Non-Food Biomass Production, Processing and Use in Sub-Saharan Africa: Towards a Basis for a Regional Bioeconomy

Authors: --- --- ---
ISBN: 9783039286683 / 9783039286690 Year: Pages: 446 DOI: 10.3390/books978-3-03928-669-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Agriculture (General)
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

The bioeconomy concept aims to add sustainability to the production, transformation, and trade of biological goods. Though implemented around the world, the development of national bioeconomies is uneven, especially in the global South, where major challenges exist in Sub-Saharan Africa. In this context, the international BiomassWeb project aimed to underpin the bioeconomy concept by applying the value web approach, which seeks to uncover complex interlinked value webs instead of linear value chains. The project also aimed to develop intervention options to strengthen and optimize the synergies and trade-offs among different value chains. The Special Issue “Advances in Food and Non-Food Biomass Production, Processing and Use in Sub-Saharan Africa: Toward a Basis for a Regional Bioeconomy"" compiles 23 articles produced in this framework. The articles are grouped in four sections: the value web approach; the production side; processing, transformation and trade; and global views.

Keywords

contract farming --- contract design --- cassava --- bioeconomy --- Ghana --- adoption --- land-use --- deforestation --- food security --- renewable energy --- collaboration --- leadership --- push–pull technology --- sustainability --- transdisciplinary research --- Ethiopia --- demand-driven research --- Biomass --- innovation --- Ghana --- husk --- pulp --- parchment --- mucilage --- methane --- renewable energy --- bioeconomy --- green economy --- sustainable development --- bioproductivity --- high-tech bioeconomy --- knowledge-based bioeconomy --- primary sector --- typology --- cluster analysis --- food and non-food benefit --- homegarden --- multipurpose tree on farmland --- multistorey coffee system --- multi-functionality --- traditional agroforestry --- Yayu Biosphere Reserve --- yellow cassava --- sustainability --- cassava variants --- cassava processing --- carotenoids retention --- amylose --- bioeconomy --- governance --- development policy --- innovation --- technology --- bio-based --- mixed methods --- richness --- edible --- food bearing --- neighborhoods --- maize --- Policy Analysis Matrix --- comparative advantage --- probit --- Ghana --- cassava farmers --- value addition --- productivity differentials --- impact --- endogenous switching regression --- plantain residues --- fiber --- value web --- bioeconomy --- Ghana --- biochar --- crop residue --- corncob --- germination --- phytotoxicity --- self-purging pyrolysis --- soil amendment --- biomass --- value web --- bioeconomy --- bamboo --- Ethiopia --- sustainability --- intensification options --- maize --- groundnut --- crop residue --- crop model --- cassava processors --- smallholders --- solid waste --- pollution --- value-added --- willingness to pay --- biomass utilization --- intensity --- cassava smallholders --- Nigeria --- availability --- access --- Ghana --- Nigeria --- Ethiopia --- value chain --- CGE --- fertilizer-yield-response --- productivity --- welfare --- Ethiopia --- family farming --- farmland --- food security --- rural development --- biomass scenarios --- global biomass --- bioenergy --- sustainability --- food security --- basic needs --- intragenerational justice --- equity --- fairness --- development --- Biomass-based value web --- biological goods --- bio-based economy --- food and non-food --- circular economy

Biomass Processing for Biofuels, Bioenergy and Chemicals

Authors: --- ---
ISBN: 9783039289097 / 9783039289103 Year: Pages: 428 DOI: 10.3390/books978-3-03928-910-3 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Biomass can be used to produce renewable electricity, thermal energy, transportation fuels (biofuels), and high-value functional chemicals. As an energy source, biomass can be used either directly via combustion to produce heat or indirectly after it is converted to one of many forms of bioenergy and biofuel via thermochemical or biochemical pathways. The conversion of biomass can be achieved using various advanced methods, which are broadly classified into thermochemical conversion, biochemical conversion, electrochemical conversion, and so on. Advanced development technologies and processes are able to convert biomass into alternative energy sources in solid (e.g., charcoal, biochar, and RDF), liquid (biodiesel, algae biofuel, bioethanol, and pyrolysis and liquefaction bio-oils), and gaseous (e.g., biogas, syngas, and biohydrogen) forms. Because of the merits of biomass energy for environmental sustainability, biofuel and bioenergy technologies play a crucial role in renewable energy development and the replacement of chemicals by highly functional biomass. This book provides a comprehensive overview and in-depth technical research addressing recent progress in biomass conversion processes. It also covers studies on advanced techniques and methods for bioenergy and biofuel production.

Keywords

lignocellulose --- pretreatment --- hardwood --- extrusion --- enzymatic digestibility --- bioethanol --- renewable energy --- biofuel --- environment --- technology development --- co-combustion --- sewage sludge --- thermogravimetric analysis --- Fourier transform infrared spectroscopy --- synergistic effect --- single-pellet combustion --- biodiesel --- fatty acid methyl ester --- free fatty acids --- oxidation stability --- antioxidant --- hydrogen --- coffee mucilage --- organic wastes --- dark fermentation --- anaerobic digestion --- biodiesel --- bio-jet fuel --- triacylglycerides --- Fatty Acid Methyl Ester --- lipids --- hydrodeoxygenation --- drop-in fuel --- rubber seed oil --- biodiesel production --- nanomagnetic catalyst --- subcritical methanol --- FAME yield --- Box-Behnken design --- GCI --- biodiesel --- diesel --- combustion --- emission --- renewable energy --- microwave --- free fatty acid --- crude oil --- renewable energy --- biomass --- waste --- black soldier fly larvae (BSFL) --- instar --- lipid --- fatty acid methyl ester (FAME) --- fermentation --- Rancimat method --- butylated hydroxyanisole --- tert-butylhydroquinone --- fatty acid methyl esters --- viscosity --- response surface --- anaerobic treatment --- biogas --- kinetic study --- potato peels --- cow manure --- thermophilic --- mesophilic --- palm oil mill effluent --- acclimatization --- direct carbon fuel cell --- biochar --- pyrolysis --- power density --- pre-treatment --- post-treatment --- combustion characteristics --- injection strategies --- compression ratio --- intake temperature --- torrefaction --- vacuum --- biomass pretreatment --- bioenergy --- energy yield --- biochar --- rice straw --- rice husk --- power generation --- gasification --- alternative fuel --- Rhus typhina biodiesel --- non-edible oil --- base-catalyzed transesterification --- Physico-chemical properties --- concentration polarization --- draw solution --- feed solution --- forward osmosis --- pressure-retarded osmosis --- operating conditions --- membrane fouling --- osmotic membrane --- bioenergy --- biofuel --- nanotechnology --- nano-catalysts --- nano-additives --- crude glycerol --- glycerol carbonate --- dimethyl carbonate --- microwave irradiation --- reaction kinetics

Listing 1 - 3 of 3
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (3)


License

CC by-nc-nd (3)


Language

eng (2)

english (1)


Year
From To Submit

2020 (3)