Search results: Found 2

Listing 1 - 2 of 2
Sort by
Towards Mechanism-based Treatments for Fragile X Syndrome

Authors: ---
ISBN: 9783039215058 9783039215065 Year: Pages: 250 DOI: 10.3390/books978-3-03921-506-5 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

It has been more than 25 years since the identification of the FMR1 gene and the demonstration of the causative role of CGG-repeat expansion in the disease pathology of fragile X syndrome (FXS), but the underlying mechanisms involved in the expansion mutation and the resulting gene silencing still remain elusive. Our understanding of the pathways impacted by the loss of FMRP function has grown tremendously, and has opened new avenues for targeted treatments for FXS. However, the failure of recent clinical trials that were based on successful preclinical studies using the Fmr1 knockout mouse model has forced the scientific community to revisit clinical trial design and identify objective outcome measures. There has also been a renewed interest in restoring FMR1 gene expression as a possible treatment approach for FXS. This special issue of Brain Sciences highlights the progress that has been made towards understanding the disease mechanisms and how this has informed the development of treatment strategies that are being explored for FXS.

Keywords

fragile X syndrome --- clinical trials --- targeted treatments --- drug development --- fragile X syndrome --- clinical trials --- treatment development --- best practices --- fragile X syndrome --- newborn screening --- early identification --- fragile X syndrome --- X chromosome --- females --- FMR1 --- anxiety --- avoidance --- cognition --- behavior --- brain --- Fragile X --- FMRP --- Fxr2 --- Fmr1 --- fragile X syndrome --- executive function --- working memory --- set-shifting --- cognitive flexibility --- inhibitory control --- attention --- planning --- processing speed --- Fragile X syndrome 1 --- Fragile X-associated Tremor/Ataxia Syndrome 2 --- CRISPR 3 --- Trinucleotide Repeat 4 --- Gene editing --- fragile X syndrome --- FMR1 gene --- voice of the person --- voice of the patient --- characteristics that have the greatest impact --- developmental disorders --- fragile X syndrome --- language development --- automated vocal analysis --- adeno-associated virus --- autism spectrum disorders --- cerebral spinal fluid --- fragile X mental retardation protein --- neurodevelopmental disorders --- viral vector --- fragile X syndrome --- gene reactivation --- RNA:DNA hybrid --- FMRP --- histone methylation --- DNA methylation --- FMR1 --- PRC2 --- fragile X syndrome --- unstable repeat diseases --- epigenetic gene silencing --- DNA methylation --- repeat instability --- pluripotent stem cells --- CGG Repeat Expansion Disease --- DNA instability --- expansion --- contraction --- mismatch repair (MMR) --- base excision repair (BER) --- transcription coupled repair (TCR) --- double-strand break repair (DSBR) --- Non-homologous end-joining (NHEJ) --- mosaicism --- protein synthesis --- Fragile X Syndrome --- biomarker --- iPSC --- fibroblast --- lymphoblast --- fragile X syndrome --- molecular biomarkers --- FMR1 --- FMRP --- intellectual disability --- Fmr1 KO mouse --- ASD --- n/a

DNA Replication Stress

Author:
ISBN: 9783039213894 9783039213900 Year: Pages: 368 DOI: 10.3390/books978-3-03921-390-0 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology
Added to DOAB on : 2019-12-09 16:10:12
License:

Loading...
Export citation

Choose an application

Abstract

This Special Issue of International Journal of Molecular Sciences (IJMS) is dedicated to the mechanisms mediated at the molecular and cellular levels in response to adverse genomic perturbations and DNA replication stress. The relevant proteins and processes play paramount roles in nucleic acid transactions to maintain genomic stability and cellular homeostasis. A total of 18 articles are presented which encompass a broad range of highly relevant topics in genome biology. These include replication fork dynamics, DNA repair processes, DNA damage signaling and cell cycle control, cancer biology, epigenetics, cellular senescence, neurodegeneration, and aging. As Guest Editor for this IJMS Special Issue, I am very pleased to offer this collection of riveting articles centered on the theme of DNA replication stress. The blend of articles builds upon a theme that DNA damage has profound consequences for genomic stability and cellular homeostasis that affect tissue function, disease, cancer, and aging at multiple levels and through unique mechanisms. I thank the authors for their excellent contributions, which provide new insight into this fascinating and highly relevant area of genome biology.

Keywords

barley --- chromosome --- DNA replication pattern --- EdU --- mutagens --- DNA replication --- DNA damage --- DNA repair --- genome integrity --- A549 cells --- H1299 cells --- heterogeneity --- DNA damage response --- 8-chloro-adenosine --- DNA replication --- S phase --- origin firing --- TopBP1 --- ATR --- DNA fiber assay --- APE2 --- ATR-Chk1 DDR pathway --- Genome integrity --- SSB end resection --- SSB repair --- SSB signaling --- DNA replication stress --- genome stability --- ubiquitin --- replication fork restart --- translesion synthesis --- template-switching --- homologous recombination --- Fanconi Anemia --- G protein-coupled receptor (GPCR) --- aging --- DNA damage --- ?-arrestin --- G protein-coupled receptor kinase (GRK) --- interactome --- G protein-coupled receptor kinase interacting protein 2 (GIT2) --- ataxia telangiectasia mutated (ATM) --- clock proteins --- energy metabolism --- neurodegeneration --- cellular senescence --- ageing --- Alzheimer’s disease --- multiple sclerosis --- Parkinson’s disease --- lipofuscin --- SenTraGorTM (GL13) --- senolytics --- DNA replication --- DNA repair --- DNA damage response --- DNA translocation --- DNA helicase --- superfamily 2 ATPase --- replication restart --- fork reversal --- fork regression --- chromatin remodeler --- C9orf72 --- ALS --- motor neuron disease --- R loops, nucleolar stress --- neurodegeneration --- Difficult-to-Replicate Sequences --- replication stress --- non-B DNA --- Polymerase eta --- Polymerase kappa --- genome instability --- common fragile sites --- Microsatellites --- cancer --- DNA double-strand repair --- premature aging --- post-translational modification --- protein stability --- replication stress --- Werner Syndrome --- Werner Syndrome Protein --- dormant origins --- replicative stress --- replication timing --- DNA damage --- genome instability --- cancer --- Thermococcus eurythermalis --- endonuclease IV --- AP site analogue --- spacer --- DNA repair --- DNA repair --- double strand break repair --- exonuclease 1 --- EXO1 --- mismatch repair --- MMR --- NER --- nucleotide excision repair --- strand displacements --- TLS --- translesion DNA synthesis --- POL? --- mutation frequency --- mutations spectra --- SupF --- mutagenicity --- oxidative stress --- DNA damage --- DNA repair --- replication --- 8-oxoG --- epigenetic --- gene expression --- helicase --- cell cycle checkpoints --- genomic instability --- G2-arrest --- cell death --- repair of DNA damage --- adaptation --- n/a

Listing 1 - 2 of 2
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (2)


License

CC by-nc-nd (2)


Language

english (2)


Year
From To Submit

2019 (2)