Search results:
Found 28
Listing 1 - 10 of 28 | << page >> |
Sort by
|
Choose an application
Short non-coding RNA molecules, microRNAs (miRNAs), post-transcriptionally regulate gene expression in living cells. In recent years, miRNAs have been found in a wide spectrum of mammalian body fluids including blood plasma, saliva, urine, milk, seminal plasma, tears and amniotic fluid as extracellular circulating nuclease-resistant entities. The changes in miRNA spectra observed in certain fluids correlated with various pathological conditions suggesting that extracellular miRNAs can serve as informative biomarkers for certain diseases including cancer. However, the mechanism of generation and a biological role of extracellular miRNAs remain unclear. The current theories regarding extracellular miRNA origin and function suggest that these miRNAs can be either non-specific 'by-products' of cellular activity and cell death or specifically released cell-cell signaling messengers. The goal of this Research Topic is to bring together up-to-date knowledge about the extracellular miRNA and its role in disease diagnostics and, possibly, inter-cellular communication.
circulating miRNA --- extracellular miRNA --- exosomal miRNA --- Argonaute Proteins --- cell-cell communication --- biological fluids --- blood plasma --- blood serum
Choose an application
This research topic focuses on epigenetic components of PTSD. Epigenetic mechanisms are a class of molecular mechanisms by which environmental influences, including stress, can interact with the genome to have long-term consequences for brain plasticity and behavior. Articles herein include empirical reports and reviews that link stress and trauma with epigenetic alterations in humans and animal models of early- or later-life stress. Themes present throughout the collection include: DNA methylation is a useful biomarker of stress and treatment outcome in humans; epigenetic programming of stress-sensitive physiological systems early in development confers an enhanced risk on disease development upon re-exposure to trauma or stress; and, long-lived fear memories are associated with epigenetic alterations in fear memory and extinction brain circuitry.
Choose an application
Small RNA pathways or RNA silencing is a group of pathways, which utilize small RNAs as guides for sequence-specific repression. This collection of texts has an origin in a report prepared for the EFSA in 2016 and 2017. The original text was reorganized into twelve chapters, which were reformatted and revised in order to remove copyrighted material from third parties and provide a introductory parts for stand alone chapters. Nine of the chapters focus on small RNA pathways in animals and plants. The remaining three chapters include a general introduction and reviews of important phenomena – off-targeting and extracellular small RNAs.
Choose an application
As clinical trials of pharmacological neuroprotective strategies in stroke have been disappointing, attention has turned to the brain's own endogenous strategies for neuroprotection. Two endogenous mechanisms have been recently characterized, ischemic preconditioning and ischemic postconditioning. In the present topic newly characterized mechanisms involved in preconditioning- and postconditioning- neuroprotection will be discussed. The understanding of the mechanisms involved in the neuroprotective pathways induced by preconditioning and postconditioning will be clinically relevant for identifying new druggable target for neurodegenerative disorder therapy. Furthermore, the importance of these neuroprotective strategies resides in that it might be easily translatable into clinical practice. Therefore, the data presented here will highlight the capacity of ischemic preconditioning and postconditioning to be of benefit to humans.
preconditioning --- postconditioning --- Neuroprotection --- NCX --- miRNA --- Stroke --- Alzheimer --- seizure
Choose an application
Our understanding of the mechanisms underlying the development of multifactorial diseases such as diabetes, autism, Alzheimer's disease, and cancer has been greatly advanced. Non-coding RNAs (ncRNAs), generally including microRNAs and long non-coding RNAs, have recently been found to have potential roles in these diseases, and provide new opportunities for developing both specific biomarkers and therapeutic targets. However, the molecular function and regulation of these RNAs still remains challenging. Numerous studies are focusing on this field in order to fully appreciate the role and regulation of these molecules in human medicine and biology. This e-book aims to bring together new findings on Non-coding RNAs in different complex diseases. It will highlight the characterization, roles, mechanism, and mode of action of these RNAs in complex disorders. We believe that the publications on this topic would be exponentially extended in future. The improved approaches at multiple levels may pave the way for designing and applying new biomarker and therapeutic targets for specific diseases based on these attractive molecules.
long non-coding RNA --- miRNA --- biomarker --- Cancer --- complex disease
Choose an application
Regulatory non-protein-coding RNA genes and their transcripts were first found and characterized in bacteria but encompass all biological kingdoms. The complexity of non-coding RNAs (ncRNAs) in terms of number and types increases with degree of biological development, whereby humans and other primates appear to have the largest number. Many regulatory ncRNAs base-pair to a target RNA or DNA and inhibit target function. Bacterial ncRNA genes largely respond to environmental stress conditions and help protect the organism from adverse conditions. The prokaryotic RNAs are for the most part small (<200 bp) and are commonly referred to as small regulatory RNAs (sRNAs). Eukaryotic RNAs consist of small <200 nt RNAs and large >200 nt (termed lncRNAs). The eukaryotic small RNAs include miRNAs, siRNAs, and piRNAs. miRNAs inhibit mRNA functions and may also be associated with cancer. lncRNAs functions are multifaceted and include epigenetic regulation and animal development. The bacterial and archeal immune system CRISPR, and the eukaryotic piwi-interacting RNAs (piRNA) immune system that inhibits mobile elements in germ line cells both function by via RNA transcript/ target DNA heteroduplex base-pairing are a specific class of RNAs that protect cells from invading transposons/and or viruses. siRNAs function in plant and invertebrate immune systems and protect against viral infections. [...]
Regulatory RNA --- siRNA --- sRNA --- piRNA --- ncRNA --- CRISPR RNA --- lncRNA --- miRNA --- regulatory small RNA fragments
Choose an application
Regulatory non-protein-coding RNA genes and their transcripts were first found and characterized in bacteria but encompass all biological kingdoms. The complexity of non-coding RNAs (ncRNAs) in terms of number and types increases with degree of biological development, whereby humans and other primates appear to have the largest number. Many regulatory ncRNAs base-pair to a target RNA or DNA and inhibit target function. Bacterial ncRNA genes largely respond to environmental stress conditions and help protect the organism from adverse conditions. The prokaryotic RNAs are for the most part small (<200 bp) and are commonly referred to as small regulatory RNAs (sRNAs). Eukaryotic RNAs consist of small <200 nt RNAs and large >200 nt (termed lncRNAs). The eukaryotic small RNAs include miRNAs, siRNAs, and piRNAs. miRNAs inhibit mRNA functions and may also be associated with cancer. lncRNAs functions are multifaceted and include epigenetic regulation and animal development. The bacterial and archeal immune system CRISPR, and the eukaryotic piwi-interacting RNAs (piRNA) immune system that inhibits mobile elements in germ line cells both function by via RNA transcript/ target DNA heteroduplex base-pairing are a specific class of RNAs that protect cells from invading transposons/and or viruses. siRNAs function in plant and invertebrate immune systems and protect against viral infections. [...]
Regulatory RNA --- siRNA --- sRNA --- piRNA --- ncRNA --- CRISPR RNA --- lncRNA --- miRNA --- regulatory small RNA fragments
Choose an application
Myofibroblasts (MFB) are found in most tissues of the body. They have the matrix-producing functions of fibroblasts and contractile properties that are known from smooth muscle cells. Fundamental work of the last decades has shed remarkable light on their origin, biological functions and role in disease. During hepatic injury, they fulfill manifold functions in connective tissue remodeling and wound healing, but overshooting activity of MFB on the other side induces fibrosis and cirrhosis. The present e-book "Liver myofibroblasts" contains 9 articles providing comprehensive information on "hot topics" of MFB. In our opening editorial we provide a short overview of the origin of MFB and their relevance in extracellular matrix formation which is the hallmark of hepatic fibrosis. Thereafter, leading experts in the field share their current perspectives on special topics of (i) MFB in development and disease, ii) their role in hepatic fibrogenesis, and (iii) promising therapies and targets that are suitable to interfere with hepatic fibrosis.
Hepatic Stellate Cells --- Portal myofibroblasts --- Myofibroblasts --- Autophagy --- NADPH Oxidase --- Matrix stiffness --- Cytoglobin --- miRNA --- Xanthohumol --- therapy
Choose an application
Scarring of the glomerular and tubulointerstitial compartments is a hallmark of progressive kidney disease. Renal fibrosis involves a complex interplay between kidney cells, leukocytes and fibroblasts in which transforming growth factor-β (TGF-β) plays a key role. This eBook provides a comprehensive update on TGF-β signalling pathways and introduces a range of cellular and molecular mechanisms involved in renal fibrosis both upstream and downstream of TGF-β. The wide variety of potential new targets described herein bodes well for the future development of effective therapies to tackle the major clinical problem of progressive renal fibrosis.
BMP7 --- fibroblast --- HDAC --- HIPK2 --- JNK --- miRNA --- non-classical RAS --- Smad --- TGF-beta
Choose an application
This Special Issue celebrates the 25th anniversary of the discovery of the first microRNA. The size of the microRNome and complexity of animal body plans and organ systems suggests a role for microRNAs in cell fate determination and differentiation. More than 2000 sequences have been proposed to represent unique microRNA genes in humans, with an increasing number of mechanistic roles identified in developmental, physiological, and pathological processes. Thus, dysregulation of a few key microRNAs can have a profound global effect on the gene expression and molecular programs of a cell. This great potential for clinical intervention has captured the interest and imagination of researchers in many fields. However, very few fields have been as prolific as the field of cancer research. This Special Issue provides but a glimpse of the large body of literature of microRNA biology in cancer research, containing 4 original research studies and 4 review articles that focus on specific hematologic or solid tumors in disease. Collectively, these articles highlight state-of-the-art approaches and methodologies for microRNA detection in tissue, blood, and other body fluids in a range of biomarkers applications, from early cancer detection to prognosis and treatment response. The articles also address some of the challenges regarding clinical implementation.
plasma --- miRNAs --- colorectal cancer --- bevacizumab --- miRNA --- biomarker --- oral cancer --- leukoplakia --- early diagnosis --- liquid biopsy --- early diagnosis --- circulating free DNA --- microRNA --- hepatocellular carcinoma --- hepatitis B virus --- hepatitis C virus --- long non coding RNA --- exosomes --- extracellular microRNA --- large T-antigen --- protein-miRNA complex --- small t-antigen --- miRNA --- cancer --- children --- leukemia --- lymphoma --- review --- miRNA (microRNA) --- T-cell acute lymphoblastic leukemia (T-ALL) --- normalization of miRNA expression in RT-qPCR --- endogenous controls --- reference genes --- tissue analysis --- cell lines --- colorectal --- cancer --- microRNA --- biomarkers --- colorectal cancer --- confocal slide scanning microscopy --- inflammation --- interleukin-1?, microRNA --- miR-21 --- TNF-? --- tumor budding cells --- n/a
Listing 1 - 10 of 28 | << page >> |
Sort by
|